Những câu hỏi liên quan
NC
Xem chi tiết
SG
27 tháng 8 2016 lúc 12:03

1) Ta có: P = |x| + 7 > hoặc = 7

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy Min P = 7 khi và chỉ khi x = 0

2) Ta có: Q = 9 - |x| < hoặc = 9

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy Max Q = 9 khi và chỉ khi x = 0

Bình luận (0)
LA
27 tháng 8 2016 lúc 12:07

a)Ta có:\(\left|x\right|\ge0\Rightarrow P=\left|x\right|+7\)\(\ge7\)

Đẳng thức xảy ra khi: |x| = 0  => x = 0

Vậy giá trị nhỏ nhất của p là 7 khi x = 0

b) Ta có: \(\left|x\right|\ge0\Rightarrow-\left|x\right|\le0\Rightarrow Q=9-\left|x\right|=9+\left(-\left|x\right|\right)\le9\)

Đẳng thức xảy ra khi: -|x| = 0  => x = 0

Vậy giá trị lớn nhất của Q là 9 khi x = 0

Bình luận (0)
TH
27 tháng 8 2016 lúc 12:15

1﴿ Ta có: P = |x| + 7 > hoặc = 7

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy Min P = 7 khi và chỉ khi x = 0

2﴿ Ta có: Q = 9 ‐ |x| < hoặc = 9

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy Max Q = 9 khi và chỉ khi x = 0

k nha bị âm r

Bình luận (0)
CN
Xem chi tiết
H24
31 tháng 1 2018 lúc 12:43

\(\left(x-1\right)^2\ge0;\left|2y+2\right|\ge0\Rightarrow\left(x-1\right)^2+\left|2y+2\right|-3\ge-3\)

dấu = xảy ra khi \(\hept{\begin{cases}x-1=0\\2y+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}}\)

vậy GTNN của C là -3 khi x=1, y=-1

Bình luận (0)
TD
Xem chi tiết
EC
29 tháng 7 2019 lúc 15:08

Ta có:

A = -x2 - 4x - 2 = -(x2 +  4x + 4) + 2 = -(x + 2)2 + 2

Ta luôn có: -(x + 2)2 \(\le\)\(\forall\)x

=> -(x + 2)2 + 2 \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2

Vậy Max của A = 2 tại x = -2 

(xem lại đề)

Bình luận (0)
MN
Xem chi tiết
NT
27 tháng 6 2022 lúc 22:38

a: \(A=\left|x+1\right|+5\ge5\forall x\)

Dấu '=' xảy ra khi x=-1

b: \(B=\dfrac{x^2+3+12}{x^2+3}=1+\dfrac{12}{x^2+3}\le\dfrac{12}{3}+1=4+1=5\)

Dấu '=' xảy ra khi x=0

Bình luận (0)
TO
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết
DH
1 tháng 11 2017 lúc 19:31

GTLN :

\(A=\frac{x+1}{x^2+x+1}=\frac{\left(x^2+x+1\right)-x^2}{x^2+x+1}=1-\frac{x^2}{x^2+x+1}\)

Vì \(\frac{x^2}{x^2+x+1}=\frac{x^2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\forall x\) nên \(A=1-\frac{x^2}{x^2+x+1}\le1\forall x\) có GTLN là 1

GTNN : 

\(A=\frac{x+1}{x^2+x+1}=\frac{-\frac{1}{3}x^2-\frac{1}{3}x-\frac{1}{3}+\frac{1}{3}x^2+\frac{4}{3}x+\frac{4}{3}}{x^2+x+1}=\frac{-\frac{1}{3}\left(x^2+x+1\right)+\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}\)

\(=-\frac{1}{3}+\frac{\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}=-\frac{1}{3}+\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\ge-\frac{1}{3}\) có GTNN là \(-\frac{1}{3}\)

Bình luận (0)
VL
Xem chi tiết
OP
9 tháng 8 2016 lúc 9:40

\(2x^2+10x-1\)

\(=2\left(x^2+5x-\frac{1}{2}\right)\)

\(=2\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{27}{4}\right)\)

\(=2\left(\left(x+\frac{5}{2}\right)^2-\frac{27}{4}\right)\)

\(=\frac{-27}{2}-2\left(x+\frac{5}{2}\right)^2\le\frac{-27}{2}\)

\(MinB=\frac{-27}{2}\Leftrightarrow x+\frac{5}{2}=0\Rightarrow x=-\frac{5}{2}\)

Bình luận (0)
MA
9 tháng 8 2016 lúc 9:40

Min B= -1 khi x=0

Min C=0 khi x=0

Bình luận (0)
UN
9 tháng 8 2016 lúc 9:45

+) \(B=2.\left(x^2+5x-\frac{1}{2}\right)\)

\(B=2.\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{27}{4}\right)\)

\(B=2.\left[\left(x+\frac{5}{2}\right)^2-\frac{27}{4}\right]\)

\(B=1.\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge-\frac{27}{2}\)

Vậy Min B=-27/2 khi và chỉ khi x=-5/2

Bình luận (0)