Những câu hỏi liên quan
NQ
Xem chi tiết
NT
15 tháng 11 2023 lúc 20:34

\(\overrightarrow{OC}-\overrightarrow{OB}=\overrightarrow{BO}+\overrightarrow{OC}=\overrightarrow{BC}\)(1)

ABCD là hình bình hành

=>\(\overrightarrow{BD}=\overrightarrow{BA}+\overrightarrow{BC}\)

=>\(\overrightarrow{BC}=\overrightarrow{BD}-\overrightarrow{BA}\left(2\right)\)

Từ (1) và (2) suy ra \(\overrightarrow{OC}-\overrightarrow{OB}=\overrightarrow{BD}-\overrightarrow{BA}\)

Bình luận (0)
HH
Xem chi tiết
PH
30 tháng 12 2020 lúc 14:00

Câu 1: giả sử:\(\overrightarrow{BD}-\overrightarrow{BA}=\overrightarrow{OC}-\overrightarrow{OB}\Leftrightarrow\overrightarrow{BA}+\overrightarrow{AD}-\overrightarrow{BA}=\overrightarrow{OC}+\overrightarrow{BO}\)

\(\Leftrightarrow\overrightarrow{AD}=\overrightarrow{BC}\)(luôn đúng vì ABCD lad hình bình hành)

giả sử: \(\overrightarrow{BC}-\overrightarrow{BD}+\overrightarrow{BA}=\overrightarrow{0}\Leftrightarrow\overrightarrow{BC}-\overrightarrow{BC}+\overrightarrow{DC}+\overrightarrow{BA}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{BB}+\overrightarrow{DD}=\overrightarrow{0}\)(LUÔN ĐÚNG)

câu 2 :GIẢ SỬ:

 \(\overrightarrow{AB}+\overrightarrow{OA}=\overrightarrow{OB}\Leftrightarrow\overrightarrow{AO}+\overrightarrow{OB}+\overrightarrow{OA}+\overrightarrow{BO}=\overrightarrow{0}\)(luôn đúng)

giả sử: \(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{MD}\\ \Leftrightarrow\overrightarrow{MB}+\overrightarrow{BA}+\overrightarrow{MD}+\overrightarrow{DC}=\overrightarrow{MB}+\overrightarrow{MD}\Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\)

Bình luận (0)
NH
Xem chi tiết
QL
Xem chi tiết
HM
24 tháng 9 2023 lúc 1:12

a) \(\overrightarrow {BD}  = \overrightarrow {AD}  - \overrightarrow {AB} ;\;\overrightarrow {AC}  = \overrightarrow {AB}  + \overrightarrow {AD} .\)

b) \(\overrightarrow {AB} .\overrightarrow {AD}  = 4.6.\cos \widehat {BAD} = 24.\cos {60^o} = 12.\)

\(\begin{array}{l}\overrightarrow {AB} .\overrightarrow {AC}  = \overrightarrow {AB} (\overrightarrow {AB}  + \overrightarrow {AD} ) = {\overrightarrow {AB} ^2} + \overrightarrow {AB} .\overrightarrow {AD}  = {4^2} + 12 = 28.\\\overrightarrow {BD} .\overrightarrow {AC}  = (\overrightarrow {AD}  - \overrightarrow {AB} )(\overrightarrow {AB}  + \overrightarrow {AD} ) = {\overrightarrow {AD} ^2} - {\overrightarrow {AB} ^2} = {6^2} - {4^2} = 20.\end{array}\)

c) Áp dụng định lí cosin cho tam giác ABD ta có:

\(\begin{array}{l}\quad \;B{D^2} = A{B^2} + A{D^2} - 2.AB.AD.\cos A\\ \Leftrightarrow B{D^2} = {4^2} + {6^2} - 2.4.6.\cos {60^o} = 28\\ \Leftrightarrow BD = 2\sqrt 7 .\end{array}\)

Áp dụng định lí cosin cho tam giác ABC ta có:

\(\begin{array}{l}\quad \;A{C^2} = A{B^2} + B{C^2} - 2.AB.BC.\cos B\\ \Leftrightarrow A{C^2} = {4^2} + {6^2} - 2.4.6.\cos {120^o} = 76\\ \Leftrightarrow AC = 2\sqrt {19} .\end{array}\)

Bình luận (0)
CR
Xem chi tiết
TD
Xem chi tiết
TN
16 tháng 9 2016 lúc 21:49

bài 1

a CO-OB=BA

<=.> CO = BA +OB

<=> CO=OA ( LUÔN ĐÚNG )=>ĐPCM

b AB-BC=DB

<=> AB=DB+BC

<=> AB=DC(LUÔN ĐÚNG )=> ĐPCM

Cc DA-DB=OD-OC

<=> DA+BD= OD+CO

<=> BA= CD (LUÔN ĐÚNG )=> ĐPCM

d DA-DB+DC=0

VT= DA +BD+DC

= BA+DC

Mà BA=CD(CMT)

=> VT= CD+DC=O

 

Bình luận (0)
TN
16 tháng 9 2016 lúc 21:51

BÀI 2

AC=AB+BC

BD=BA+AD

=> AC+BD= AB+BC+BA+AD=BC+AD (đpcm)

 

Bình luận (0)
NL
Xem chi tiết
NL
4 tháng 1 2024 lúc 15:51

\(\overrightarrow{AM}=\overrightarrow{MB}=\overrightarrow{MA}+\overrightarrow{AB}=-\overrightarrow{AM}+\overrightarrow{AB}\Rightarrow2\overrightarrow{AM}=\overrightarrow{AB}\Rightarrow\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}\)

\(\overrightarrow{AN}=2\overrightarrow{ND}=2\left(\overrightarrow{NA}+\overrightarrow{AD}\right)=-2\overrightarrow{AN}+2\overrightarrow{AD}\Rightarrow3\overrightarrow{AN}=2\overrightarrow{AD}\Rightarrow\overrightarrow{AN}=\dfrac{2}{3}\overrightarrow{AD}\)

Do K là trung điểm MN 

\(\Rightarrow\overrightarrow{AK}=\dfrac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)=\dfrac{1}{2}\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AD}\right)=\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AD}\)

Theo tính chất hbh: \(\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}\)

Do O là tâm hình bình hành \(\Rightarrow\overrightarrow{AO}=\overrightarrow{OC}=\dfrac{1}{2}\overrightarrow{AC}\)

Mà H là trung điểm OC \(\Rightarrow\overrightarrow{OH}=\dfrac{1}{2}\overrightarrow{OC}=\dfrac{1}{4}\overrightarrow{AC}\)

\(\Rightarrow\overrightarrow{AH}=\overrightarrow{AO}+\overrightarrow{OH}=\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{4}\overrightarrow{AC}=\dfrac{3}{4}\overrightarrow{AC}=\dfrac{3}{4}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AD}\)

\(\Rightarrow\overrightarrow{KH}=\overrightarrow{KA}+\overrightarrow{AH}=-\overrightarrow{AK}+\overrightarrow{AH}\)

\(=-\dfrac{1}{4}\overrightarrow{AB}-\dfrac{1}{3}\overrightarrow{AD}+\dfrac{3}{4}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AD}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{5}{12}\overrightarrow{AD}\)

Bình luận (0)
NT
4 tháng 1 2024 lúc 15:48

\(\overrightarrow{AN}=2\overrightarrow{ND}\)

=>A,N,D thẳng hàng và AN=2ND

ABCD là hình bình hành tâm O

=>O là trung điểm chung của AC và BD

H là trung điểm của OC

nên HO=HC=1/2CO

=>\(HO=HC=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot CA=\dfrac{1}{4}CA\)

\(\overrightarrow{AM}=\overrightarrow{MB}\)

=>AM=MB và M nằm giữa A và B

=>M là trung điểm của AB

AN+ND=AD

=>2ND+ND=AD

=>AD=3ND

=>AN/AD=2/3

=>\(\overrightarrow{AN}=\dfrac{2}{3}\cdot\overrightarrow{AD}\)

\(\overrightarrow{KH}=\overrightarrow{KM}+\overrightarrow{MH}\)

\(=\dfrac{1}{2}\overrightarrow{NM}+\overrightarrow{MB}+\overrightarrow{BC}+\overrightarrow{CH}\)

\(=\dfrac{1}{2}\left(\overrightarrow{NA}+\overrightarrow{AM}\right)+\dfrac{1}{2}\overrightarrow{AB}+\overrightarrow{BC}+\dfrac{1}{4}\overrightarrow{CA}\)

\(=\dfrac{1}{2}\left(-\dfrac{2}{3}\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{AB}\right)+\dfrac{1}{2}\overrightarrow{AB}+\overrightarrow{AD}+\dfrac{1}{4}\left(\overrightarrow{CD}+\overrightarrow{CB}\right)\)

\(=-\dfrac{1}{3}\overrightarrow{AD}+\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AB}+\overrightarrow{AD}-\dfrac{1}{4}\overrightarrow{AB}-\dfrac{1}{4}\overrightarrow{AD}\)

\(=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{5}{12}\overrightarrow{AD}\)

Bình luận (0)
XT
Xem chi tiết
NT
9 tháng 1 2022 lúc 13:20

Chọn C

Bình luận (0)
NT
Xem chi tiết