cho S= 1+2+2^2+2^3+2^4+....+2^35.chứng tỏ rằng S chia hết cho 3
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho S = 1+2+2^2+2^3+2^4+2^5+2^6+2^7
Chứng tỏ rằng S chia hết cho 4
Cho S = 1+2+2^2+2^3+2^4+2^5+2^6+2^7
Chứng tỏ rằng S chia hết cho 4 VÀ 13
1 Cho S = 2 + 2^2 + 2^3 + 2^4 + ............+ 2^10 Chứng tỏ chia hết cho 3
1 Chứng tỏ rằng 1+ 3+ 3^2 +3^3 +............+ 3^99 chia hết cho 40
a) S = 2 + 22 + 23 + 24 +.....+ 29 + 210
= (2 + 22) + (23 + 24) +.....+ (29 + 210)
= 2(1 + 2) + 23(1 + 2) +....+ 29(1 + 2)
= 3.(2 + 23 +.... + 29) chia hết cho 3
=> S = 2 + 22 + 23 + 24 +.....+ 29 + 210 chia hết cho 3 (Đpcm)
b) 1+32+33+34+...+399
=(1+3+32+33)+....+(396+397+398+399)
=40+.........+396.40
=40.(1+....+396) chia hết cho 40 (đpcm)
BÀI 1:
S = 2 + 22 + 23 + 24 + ..... + 210
= (2 + 22) + ( 23 + 24) + ..... + (27 + 28) + (29 + 210)
= 2(1 + 2) + 23(1 + 2) + ..... + 27(1 + 2) + 29(1 + 2)
= 3(2 + 23 + .... + 27 + 29) \(⋮3\)
BÀI 2:
1 + 3 + 32 + 33 + ....... + 399
= (1 + 3 + 32 + 33) + ..... + (396 + 397 + 398 + 399)
= (1 + 3 + 32 + 33) + ..... + 396(1 + 3 + 32 + 33)
= 40(1 + 34 + ..... + 396) \(⋮40\)
: Cho S = 1 + 2 + 2^2 + 2^3+ 2^4+ 2^5 + 2^6+2^7. Chứng tỏ rằng S chia hết chia hết cho 3 làm sao vậy mn
\(S=1+2+2^2+2^3+2^4+2^5+2^6+2^7\)
\(\Rightarrow S=\left(1+2\right)+\left(2^2+2^3\right)+\left(2^4+2^5\right)+\left(2^6+2^7\right)\)
\(\Rightarrow S=\left(1+2\right)+2^2\left(1+2\right)+2^4\left(1+2\right)+2^6\left(1+2\right)\)
\(\Rightarrow S=\left(1+2\right)\left(1+2^2+2^4+2^6\right)\)
\(\Rightarrow S=3\left(1+2^2+2^4+2^6\right)⋮3\)
S=(1+2)+...+2^6(1+2)=3(1+...+2^6)⋮3
Bài 1: Cho A= 2 + 2 ^ 2 + 2 ^ 3 +.......+2^ 60 . Chứng tỏ rằng: 4 chia hết cho 3,5,7. Bài 2: Cho S= 1 + 5 ^ 2 + 5 ^ 4 + 5 ^ 6 +***+5^ 2020 . Chứng minh rằng S chia hết cho 313 Bài 3: Tính A= 5 + 5 ^ 2 + 5 ^ 3 +...+5^ 12
Bài 3:
\(A=5+5^2+..+5^{12}\)
\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)
\(5A=5^2+5^3+...+5^{13}\)
\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)
\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)
\(4A=5^{13}-5\)
\(A=\dfrac{5^{13}-5}{4}\)
Bài 1
a. Cho S = 3+3^2+3^3+3^4+3^5+3^6
Chứng tỏ rằng S chia hết cho 4
b. Chứng tỏ rằng : A = 4+4^2+4^3+4^4+4^5+4^6+4^7+4^8+4^9
Chia hết cho cả 3 và 4
Bài 2
a. Tìm số tự nhiên n sao cho 3 chia hết cho (n-1)
b. Tìm số tự nhiên n sao cho n+3 chia hết cho (n+1)
Bài 3
10^35 + 2 có chia hết cho 3 không. Vì sao?
Giup mik nha ai nhanh nhất mik sẽ TICK cho
Giúp với
Chứng tỏ rằng 3^4+3^5+3^6+3^7+3^8+3^9 chia hết cho 4 không tính nhân ra rồi chia nha
Cho S=1+2+2^2+2^3+2^4+...................+2^17. Chứng tỏ rằng S chia hết cho 7.
Cho S = 1+2+2^2+2^3+2^4+2^5+2^6+2^7
Chứng tỏ rằng S chia hết cho 3
cái lòn con gái banh ra , con kẹt con trai thụt vào rồi liếm vào đó...........( tự hiểu, phê chưa)
Bài 1
a. Cho S = 3+3^2+3^3+3^4+3^5+3^6
Chứng tỏ rằng S chia hết cho 4
b. Chứng tỏ rằng : A = 4+4^2+4^3+4^4+4^5+4^6+4^7+4^8+4^9
Chia hết cho cả 3 và 4
Bài 2
a. Tìm số tự nhiên n sao cho 3 chia hết cho (n-1)
b. Tìm số tự nhiên n sao cho n+3 chia hết cho (n+1)
Bài 3
10^35 + 2 có chia hết cho 3 không. Vì sao?
Giup mik nha ai nhanh nhất mik sẽ TICK cho, nhớ giải chi tiết cho mik nha
tích từ bài từng câu a , b , ... ra đi
cho S = 1 + 2 + 2^2 + 2^3+2^4+2^5+...+2^2018+2^2019 . Chứng tỏ rằng S chia hết cho 3
giúp mik với ><
Ta có: S= 1+2+22+23+..............+22018+22019
S= (1+2+22+23)+............+(22016+22017+22018+22019)
S=1(1+2+22+23)+..........+22016(1+2+22+23)
S=1.(1+2+4+8)+.................+22016(1+2+4+8)
S=1.15+.....................+22016.15
S=15.(1+.....+22016)
S=3.5.(1+......+22016) \(⋮\) 3
Vậy S chia hết cho 3 ( đpcm).