Những câu hỏi liên quan
PQ
Xem chi tiết
ND
Xem chi tiết
NL
12 tháng 12 2020 lúc 18:07

Bạn xem lại đề, biểu thức này ko có min max gì hết

Bình luận (1)
NT
Xem chi tiết
TN
Xem chi tiết
H24
16 tháng 10 2023 lúc 22:13

\(B=y^2-y+1\)

\(=y^2-2\cdot y\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}+1\)

\(=\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Ta thấy: \(\left(y-\dfrac{1}{2}\right)^2\ge0\forall y\)

\(\Rightarrow\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall y\)

Dấu \("="\) xảy ra \(\Leftrightarrow y-\dfrac{1}{2}=0\Leftrightarrow y=\dfrac{1}{2}\)

Vậy \(B_{min}=\dfrac{3}{4}\) khi \(y=\dfrac{1}{2}\).

\(---\)

\(C=x^2-4x+y^2-y+5\)

\(=\left(x^2-4x+4\right)+\left(y^2-y+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

\(=\left(x^2-2\cdot x\cdot2+2^2\right)+\left[y^2-2\cdot y\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]+\dfrac{3}{4}\)

\(=\left(x-2\right)^2+\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Ta thấy: \(\left(x-2\right)^2\ge0\forall x\)

              \(\left(y-\dfrac{1}{2}\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-2\right)^2+\left(y-\dfrac{1}{2}\right)^2\ge0\forall x;y\)

\(\Rightarrow\left(x-2\right)^2+\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x;y\)

Dấu \("="\) xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y-\dfrac{1}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)

Vậy \(C_{min}=\dfrac{3}{4}\) khi \(x=2;y=\dfrac{1}{2}\).

\(Toru\)

Bình luận (0)
MH
16 tháng 10 2023 lúc 22:06

\(B=y^2-y+1\)

\(=y^2-2.y.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Vì \(\left(y-\dfrac{1}{2}\right)^2\ge0\forall y\Rightarrow B\ge\dfrac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow y=\dfrac{1}{2}\)

\(C=x^2-4x+y^2-y+5\)

\(=x^2-4x+4+y^2-y+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-2\right)^2+\left(y-\dfrac{1}{2}\right)^2\)

Vì \(\left(x-2\right)^2+\left(y-\dfrac{1}{2}\right)^2\ge0\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)

Bình luận (2)
NH
Xem chi tiết
KR
7 tháng 5 2018 lúc 18:10

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

Bình luận (0)
NH
Xem chi tiết
TL
19 tháng 5 2020 lúc 20:46

Ta có \(\left(2x+y+1\right)^2\ge0;\left(4x+my+5\right)^2\ge0\Rightarrow G\ge0\)

Xét hệ \(\hept{\begin{cases}2x+y+1=0\\4x+my+5=0\end{cases}\Leftrightarrow\hept{\begin{cases}4x+2y+2=0\\4x+my+5=0\end{cases}\Rightarrow}\left(m-2\right)y+3=0}\)

Nếu \(m\ne2\)thì \(m-2\ne0\Rightarrow\hept{\begin{cases}y=\frac{3}{2-m}\\x=\frac{m-5}{4-2m}\end{cases}}\)

\(\Rightarrow Min_G=0\)

Nếu  m=2 thì

\(G=\left(2x+y+1\right)^2+\left(4x+my+5\right)^2=\left(2x+y+1\right)^2+\left[2\cdot\left(2x+y+1\right)+3\right]^2\)

Đặt 2x+y+1=z thì 

\(G=5z^2+12z+9=5\left[\left(z+\frac{6}{5}\right)^2+\frac{9}{25}\right]=5\left(x+\frac{6}{5}\right)+\frac{9}{5}\ge\frac{9}{5}\)

\(Min_G=\frac{9}{5}\Leftrightarrow2x+y+1=\frac{-6}{5}\)hay \(y=\frac{-11}{5}-2x,x\inℝ\)

Bình luận (0)
 Khách vãng lai đã xóa
KL
Xem chi tiết
HM
9 tháng 8 2023 lúc 15:53

\(a,M=x^2-4x+5=\left(x-2\right)^2+5\\ \Rightarrow M\ge5\)

Dấu "=" xảy ra \(\Leftrightarrow x=2\)

\(b,N=y^2-y-3=\left(y-\dfrac{1}{2}\right)^2-\dfrac{13}{4}\\ \Rightarrow N\ge-\dfrac{13}{4} \)

Dấu "=" xảy ra \(\Leftrightarrow y=\dfrac{1}{2}\)

\(P=x^2+y^2-4x+y+7=\left(x-2\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\\ \Rightarrow P\ge\dfrac{11}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-\dfrac{1}{2}\end{matrix}\right.\)

Bình luận (0)
NT
9 tháng 8 2023 lúc 15:06

a: M=x^2-4x+4+1

=(x-2)^2+1>=1

Dấu = xảy ra khi x=2

b: N=y^2-y+1/4-13/4

=(y-1/2)^2-13/4>=-13/4

Dấu = xảy ra khi y=1/2

c: P=x^2-4x+4+y^2+y+1/4+11/4

=(x-2)^2+(y+1/2)^2+11/4>=11/4

Dấu = xảy ra khi x=2 và y=-1/2

Bình luận (0)
MM
Xem chi tiết
LL
1 tháng 9 2021 lúc 21:53

a) \(2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)

\(ĐTXR\Leftrightarrow x=\dfrac{1}{4}\)

b) \(5x-x^2+4=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{41}{4}\le\dfrac{41}{4}\)

\(ĐTXR\Leftrightarrow x=\dfrac{5}{2}\)

c) \(x^2+5y^2-2xy+4y+3=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)

\(ĐTXR\Leftrightarrow\)\(x=y=-\dfrac{1}{2}\)

Bình luận (0)
NT
1 tháng 9 2021 lúc 21:54

b: ta có: \(-x^2+5x+4\)

\(=-\left(x^2-5x-4\right)\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{41}{4}\right)\)

\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{41}{4}\le\dfrac{41}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

Bình luận (0)
BT
1 tháng 9 2021 lúc 21:55

undefined

Bình luận (0)
NB
Xem chi tiết