a)Chứng minh rằng \(a^2+b^2+1\ge ab+a+b\)
b)Tìm giá trị của a,b biết:\(a^2-2a+6b+b^2=-10\)
tìm giá trị của a ,b biết a^2-2a+6b+b^2=-10
a2-2a+6b+b2=-10
⇒ a2-2a+6b+b2+10=0
⇒ (a2-2a+1)+(b2+6b+9)=0
⇒ (a-1)2+(b+3)2=0
vì (a-1)2≥ 0; (b+3)2 ≥ 0 mà (a-1)2+(b+3)2=0
⇒ a-1=0 và b-3=0
⇒ a=1,b=3
a2-2a+6b+b2=-10
<=> a2-2a+6b+b2+10=0
<=> a2-2a+1+6b+b2+9=0
<=> (a-1)2+(b+3)2=0
<=> (a-1)2=(b+3)2=0
\(<=>\left[\begin{array}{} (a-1)^2=0\\ (b+3)^2=0 \end{array} \right.\)
\(<=>\left[\begin{array}{} a-1=0\\ b+3=0 \end{array} \right.\)
\(<=>\left[\begin{array}{} a=1\\ b=-3 \end{array} \right.\)
Vậy a=1;b=-3
Tìm giá trị của a,b biết
a^2-2a+6b+b^2=-10
\(\Leftrightarrow a^2-2a+1+b^2+6b+9=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b+3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-1=0\\b+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-3\end{matrix}\right.\)
tìm giá trị của a,b biết : a2 - 2a + 6b + b2 = -10
a2 - 2a + 6b + b2 = -10
<=> a2 - 2a + 6b + b2 + 10 = 0
<=> ( a2 - 2a + 1 ) + ( b2 + 6b + 9 ) = 0
<=> ( a - 1 )2 + ( b + 3 )2 = 0 (*)
\(\hept{\begin{cases}\left(a-1\right)^2\ge0\forall a\\\left(b+3\right)^2\ge0\forall b\end{cases}}\Rightarrow\left(a-1\right)^2+\left(b+3\right)^2\ge0\forall a,b\)
Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}a-1=0\\b+3=0\end{cases}}\Rightarrow\hept{\begin{cases}a=1\\b=-3\end{cases}}\)
Vậy a = 1 ; b = -3
a) Tìm giá trị a,b biết: a^2 - 2a + 6b + b^2 = -10.
b) Tính giá trị của biểu thức: A = (x+y)/z + (x+z)y + (y+z)/x nếu 1/x + 1/z + 1/y = 0.
\(a.\)
Phân tích biển đổi thành nhân tử kết hợp với chuyển vế để quy về hẳng đẳng thức, khi đó, ta tính được \(a,b\)
Thật vậy, ta có:
\(a^2-2a+6b+b^2=-10\)
\(\Leftrightarrow\) \(a^2-2a+6b+b^2+10=0\)
\(\Leftrightarrow\) \(\left(a^2-2a+1\right)+\left(b^2+6b+9\right)=0\)
\(\Leftrightarrow\) \(\left(a-1\right)^2+\left(b+3\right)^2=0\) \(\left(1\right)\)
Vì \(\left(a-1\right)^2\ge0;\) \(\left(b+3\right)^2\ge0\) với mọi \(a,b\)
nên để thỏa mãn đẳng thức \(\left(1\right)\) thì phải xảy ra đồng thời \(\left(a-1\right)^2=0\) và \(\left(b+3\right)^2=0\)
\(\Leftrightarrow\) \(a-1=0\) và \(b+3=0\) \(\Leftrightarrow\) \(a=1\) và \(b=-3\)
\(b.\) Cộng \(1\) vào mỗi phân thức của biểu thức \(A\), khi đó, ta có:
\(A+3=\left(\frac{x+y}{z}+1\right)+\left(\frac{x+z}{y}+1\right)+\left(\frac{y+z}{x}+1\right)=\frac{x+y+z}{z}+\frac{x+y+z}{y}+\frac{x+y+z}{x}\)
\(A+3=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=0\) (do \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\))
Vậy, \(A=-3\)
1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.
2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.
3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)
4. Tìm liên hệ giữa các số a và b biết rằng: a b a b
5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8
6. Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
7. Tìm các giá trị của x sao cho:
a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.
8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)
9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.
10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.
11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :
x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
bạn nên viết ra từng câu
Chứ để như thế này khó nhìn lắm
bạn hỏi từ từ thôi
a) Chứng minh rằng \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)với mọi giá trị của a,b
ta có BĐT cần chứng minh
<=>\(\frac{2}{3}a^2-\frac{4}{3}ab+\frac{2}{3}b^2\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
dấu = xảy ra <=>a=b
^_^
cảm ơn bạn vũ tiền châu nhiều nhé
Cho hàm số y=f(a)=3x\(^2\)
a)Tính giá trị của hàm số lần tại -3; 2\(\sqrt{2}\)và 1-2\(\sqrt{3}\)
b) Tìm a biết f(a)=12+6\(\sqrt{3}\)
c) Tìm b biết f(b)\(\ge\)6b+12
a: \(f\left(-3\right)=3\cdot9=27\)
\(f\left(2\sqrt{2}\right)=3\cdot8=24\)
\(f\left(1-2\sqrt{3}\right)=3\cdot\left(13-4\sqrt{3}\right)=39-12\sqrt{3}\)
b: Ta có: \(f\left(a\right)=12+6\sqrt{3}=\left(3+\sqrt{3}\right)^2=3\left(\sqrt{3}+1\right)^2\)
nên \(3x^2=3\left(\sqrt{3}+1\right)^2\)
hay \(x\in\left\{\sqrt{3}+1;-\sqrt{3}-1\right\}\)
c.
$f(b)\geq 6b+12$
$\Leftrightarrow 3b^2\geq 6b+12$
$\Leftrightarrow b^2\geq 2b+4$
$\Leftrightarrow b^2-2b-4\geq 0$
$\Leftrightarrow (b-1-\sqrt{5})(b-1+\sqrt{5})\geq 0$
$\Leftrightarrow b\geq 1+\sqrt{5}$ hoặc $b\leq 1-\sqrt{5}$
Bài 1: Cho a,b dương và \(2a+3b=ab\) Chứng minh rằng
\(a+b\ge5+2\sqrt{6}\)
Bài 2: Cho a,b dương và \(a+b=ab\) Tìm giá trị lớn nhất của
\(S=\frac{1}{a}+\frac{2}{a+b}\)
Bài 3: Cho a,b là các số dương. Tìm giá trị bé nhất của
\(S=\frac{a^2+b^2}{b^2+2ab}+\frac{b^2}{a^2+2b^2}\)
Bài 4: Cho ba số dương a,b,c thỏa mãn \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=9\)Chứng minh rằng
\(\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\le\sqrt{3}\)
Bài 5: Cho ba số thực không âm x,y,z thỏa mãn \(x+y+z\ge3\)Chứng minh rằng
\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)
B3 mk tìm đc cách giải r nhưng bạn nào muốn thì trả lời cg đc
Các bạn giải giúp mình B2 và B5 nhé. Mấy bài kia mình giải được rồi.
Bài1: Giải phương trình sau:
(x2+5)(x2+10x)=6(2x-1)2
Bài 2:
a, Cho 1<=a,b,c<=3 thỏa mãn a2+b2+c2=19. Tìm giá trị nhỏ nhất của E=a+b+c.
b, Cho x,y,z>0 thỏa mãn điều kiện (x+y)(y+z)(z+x)=8. Chứng minh rằng (x+2y+z)(y+2z+x)(z+2y+x)>=64.
Bài 4: Cho các số tự nhiên a,b thỏa mãn điều kiện 2a2+a=6b2+b. Chứng minh rằng a-b, 2a+2b,2a+2a+1 đều là các số chính phương.
Bài 2. a/ \(1\le a,b,c\le3\) \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\), \(\left(c-1\right).\left(c-3\right)\le0\)
Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)
\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)
Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1
b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\)
Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)
Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay
\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)
khó lắm ai làm được tui chuyển 10k qa tài khoản ngân hàng =) nói là làm