Cho tam giác ABC vuông tại A, đường cao AM. Hãy chứng minh: BC.AM=AB.AC
Cho tam giác ABC, đường cao AM nội tiếp đường tròn đường kính AA’. a/ Hai đường cao BN, CP cắt nhau tại H, PN cắt AA’ tại S. Chứng minh BPNC và A’SNC nội tiếp. b/ Chứng minh PN vuông góc AA’.
xét tứ giác BPNC:
\(\widehat{P}=90\) (CP là đường cao)
\(\widehat{N}\)=90 (BN là đường cao)
⇒ \(\widehat{P}=\widehat{N}\)= 180
⇒ tứ giác BPNC là tứ giác nội tiếp
xét tứ giác A'SNC:
\(\widehat{N}=90\) (BN là đường cao)
\(\widehat{S}=90\) (PN\(\perp\)AB ⇒ NS\(\perp\)AB)
⇒\(\widehat{N}=\widehat{S}=180\)
⇒ tứ giác A'SNC là tứ giác nội tiếp
Cho tam giác ABC vuông tại C kẻ đường cao CD. Gọi AM, CN lần lượt là trung tuyến của tam giác ADC và tam giác DBC. Chứng minh: AM vuông góc CN
Cho tam giác ABC cân tại A, vẽ trung tuyến AM, từ M kẻ ME vuông góc với AB tại E, kẻ MF vuông góc với AC tại F.
a, Chứng minh: tam giác BEM = tam giác CFM
b, Chứng minh AM là trung trực của EF
c, Từ B kẻ đường thẳng BH vuông góc với AC tại H, từ C kẻ đường thẳng CI vuông góc với AB tại I, hai đường này cắt nhau tại D. Chứng minh: A, M, D thẳng hàng
Cho tam giác ABC vuông tại A, AH là đường cao, AD là đường phân giác. Biết AB=15cm; AC=20cm.
a. Tính AC, AH,HB,HC,BD, DC, HD, AD. b. Kẻ HI vuông góc với AB tại I, HK vuông góc với AC tại K. Chứng minh AI.AK.AC. c. Chứng minh tam giác ABC đồng dạng với tam giác AKI. d. Tính diện tích và chu vi tứ giác IBCK.a: BC=căn 15^2+20^2=25cm
AH=15*20/25=12cm
HB=15^2/25=9cm
HC=25-9=16cm
AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=25/7
=>BD=75/7cm; CD=100/7cm
b: ΔAHB vuông tại H có HI là đường cao
nên AI*AB=AH^2
ΔAHC vuông tại H có HK là đường cao
nên AK*AC=AH^2
=>AI*AB=AK*AC
c: AI*AB=AK*AC
=>AI/AC=AK/AB
=>ΔAIK đồng dạng với ΔACB
Cho tam giác ABC vuông tại A có AB=AC. Tia phân giác cua góc A cắt BC tại M
Chúng minh AM là đường trung trực của BCTrên tia đối của tia MA lấy D sao cho MA=MD.Chứng minh CA=CDChứng minh tam giác ABC=tam giác CDA và AM=1/2BCTrên MC lấy E từ B và C kẻ BH và CK cùng vuông góc với AE.Chứng minh tam giác ABH=tam giác CAKChứng minh MH=MKChứng minh tam giác MHK là tam giác vuôngCho tam giác ABC nội tiếp đường tròn (O) vé hai đường cao AD và BE cắt nhau tại H.
a) chứng minh tứ giác CEHD và AEDB nội tiếp
b) chứng minh AB.EC=BC.DE
c) kẻ đường kính AM của đường tròn (O) chứng minh hai tam giác ABD và AMC đồng dạng
d) biết góc BAC bằng 60 độ. Chứng minh tam giác AHO cân tại A.
Giải giùm mình câu d thôi ạ
Cho tam giác ABC cân tại A. Trên cạnh BC lấy D , trên tia đối của tia CB lấy E sao cho BD=CE . Qua Đ kẻ đường thẳng vuông góc BC cắt AM tại M. Qua E kẻ đường thẳng vuông góc với BC cắt AC tại N.
A) chứng minh MD=NE
B) Gọi I là giao điểm của MN,BC , chứng minh I là trung điểm MN
C) Đường thẳng vuông góc với MN, kẻ qua I cắt tia phân giác của góc BAC tại O. Chứng minh tam giác OBM = tam giác OCN
a) ta có tam giác abc cân tại A suy ra B=C3
C3=C1(2 góc đđ) suy ra B=C1
xét 2 tam giác vuông MBD và NCE
B=C1(cmt)
BD=CE(gt)
D1=E=90 độ
suy ra tam giácMBD=NCE(g.c.g)
suy ra MD=NE
b) theo câu a, ta có:MD=NE
I1=I2(2 góc đđ)
DMI=90-I1
ENI=90-I2
suy ra DMI=ENI
xét tam giác MDI và tam giác NIE
MD=NE( theo câu a)
DMI=ENI(cmt)
MDI=NEI=90
suy ra tam giác MDI=NIE(g.c.g)
suy ra IM=IN suy ra I là trung điểm của MN
Cho tam giác ABC vuông tại A, đường cao AH. Chứng minh: AH+BC > AB+AC
CM
Trên BC lấy D sao cho BA=BD.Trên AC lấy E sao cho AE=AH.
Xét \(\Delta BAD\)có BA=BD ( cách vẽ )
\(\Rightarrow\Delta BAD\)cân tại A ( định lý )
\(\Rightarrow\widehat{BAD}=\widehat{D1}\)( Tính chất ) (1)
Ta có: \(\widehat{BAD}+\widehat{A3}=\widehat{BAC}\)( hình vẽ )
\(\widehat{BAD}+\widehat{A3}=90^0\) (2)
Xét \(\Delta HAD\)có \(\widehat{H1}+\widehat{A2}+\widehat{D1}=180^0\)( Định lý )
\(\widehat{A2}+\widehat{D1}=90^0\)(3)
Từ (1) , (2) , (3) \(\Rightarrow\widehat{A2}=\widehat{A3}\)
Xét \(\Delta AHD\)và \(\Delta AED\)có:
\(\hept{\begin{cases}AH=AE\left(c.ve\right)\\\widehat{A2}=\widehat{A3}\left(cmt\right)\\ADchung\end{cases}\Rightarrow\Delta AHD=\Delta AED\left(c-g-c\right)}\)
\(\Rightarrow\widehat{H1}=\widehat{E1}\)( 2 góc tương ứng ) mà \(\widehat{H1}=90^0\Rightarrow\widehat{E1}=90^0\).
\(\Rightarrow EC\perp DC\)tại E
Xét \(\Delta DEC\)vuông tại A ( cmt ) \(\Rightarrow DC>EC\)( quan hệ giữa góc và cạnh trong tam giác vuông )
\(\Rightarrow AE+DC>AE+EC\)
\(\Rightarrow AE+DC>AC\)
\(\Rightarrow AE+BD+DC>AC+BD\)
\(\Rightarrow AE+BC>BD+AC\)
\(\Rightarrow AH+BC>AB+AC\)( đpcm )
Mọi người có thể tham khảo.
Cho tam giác ABC vuông tại A: góc ABC=54, M là trung điểm BC, đường thẳng vuông góc Ac tại C, cắt đường thẳng AM tại D. Chứng minh:
a)AB=BC
Mình cần gấp nha các bạn