Những câu hỏi liên quan
TN
Xem chi tiết
LL
23 tháng 5 2021 lúc 10:13

xét tứ giác BPNC:

\(\widehat{P}=90\) (CP là đường cao)

\(\widehat{N}\)=90 (BN là đường cao)

⇒ \(\widehat{P}=\widehat{N}\)= 180

⇒ tứ giác BPNC là tứ giác nội tiếp

xét tứ giác A'SNC:

\(\widehat{N}=90\) (BN là đường cao)

\(\widehat{S}=90\) (PN\(\perp\)AB ⇒ NS\(\perp\)AB)

\(\widehat{N}=\widehat{S}=180\)

⇒ tứ giác A'SNC là tứ giác nội tiếp

 

Bình luận (0)
LG
Xem chi tiết
DA
Xem chi tiết
DC
Xem chi tiết
NT
21 tháng 7 2023 lúc 19:51

a: BC=căn 15^2+20^2=25cm

AH=15*20/25=12cm

HB=15^2/25=9cm

HC=25-9=16cm

AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=25/7

=>BD=75/7cm; CD=100/7cm

b: ΔAHB vuông tại H có HI là đường cao

nên AI*AB=AH^2

ΔAHC vuông tại H có HK là đường cao

nên AK*AC=AH^2

=>AI*AB=AK*AC

c: AI*AB=AK*AC

=>AI/AC=AK/AB

=>ΔAIK đồng dạng với ΔACB

Bình luận (0)
DH
Xem chi tiết
LT
Xem chi tiết
NY
Xem chi tiết
H24
31 tháng 3 2016 lúc 22:19

A B C E N I D M O 1 2 2 1 2 3 1 3 1

a) ta có tam giác abc cân tại A suy ra B=C3

C3=C1(2 góc đđ) suy ra B=C1

xét 2 tam giác vuông MBD và NCE

B=C1(cmt)

BD=CE(gt)

D1=E=90 độ

suy ra tam giácMBD=NCE(g.c.g)

suy ra MD=NE

Bình luận (0)
H24
31 tháng 3 2016 lúc 22:25

b) theo câu a, ta có:MD=NE

I1=I2(2 góc đđ)

DMI=90-I1

ENI=90-I2

suy ra DMI=ENI
xét tam giác MDI và tam giác NIE

MD=NE( theo câu a)

DMI=ENI(cmt)

MDI=NEI=90

suy ra tam giác MDI=NIE(g.c.g)

suy ra IM=IN suy ra I là trung điểm của MN

Bình luận (0)
H24
31 tháng 3 2016 lúc 22:27

câu c, ko biết

Bình luận (0)
LC
Xem chi tiết
LC
2 tháng 3 2019 lúc 22:40

A B C H D E 1 1 2 3 1 1

                                                                 CM

Trên BC lấy D sao cho BA=BD.Trên AC lấy E sao cho AE=AH.

Xét \(\Delta BAD\)có BA=BD ( cách vẽ )

\(\Rightarrow\Delta BAD\)cân tại A ( định lý )

\(\Rightarrow\widehat{BAD}=\widehat{D1}\)( Tính chất )      (1)

Ta có: \(\widehat{BAD}+\widehat{A3}=\widehat{BAC}\)( hình vẽ )

          \(\widehat{BAD}+\widehat{A3}=90^0\) (2)

Xét \(\Delta HAD\)có \(\widehat{H1}+\widehat{A2}+\widehat{D1}=180^0\)( Định lý )

                                              \(\widehat{A2}+\widehat{D1}=90^0\)(3)

Từ (1) , (2) , (3) \(\Rightarrow\widehat{A2}=\widehat{A3}\)

Xét \(\Delta AHD\)và \(\Delta AED\)có:

           \(\hept{\begin{cases}AH=AE\left(c.ve\right)\\\widehat{A2}=\widehat{A3}\left(cmt\right)\\ADchung\end{cases}\Rightarrow\Delta AHD=\Delta AED\left(c-g-c\right)}\)

 \(\Rightarrow\widehat{H1}=\widehat{E1}\)( 2 góc tương ứng ) mà \(\widehat{H1}=90^0\Rightarrow\widehat{E1}=90^0\).

 \(\Rightarrow EC\perp DC\)tại E 

Xét \(\Delta DEC\)vuông tại A ( cmt ) \(\Rightarrow DC>EC\)( quan hệ giữa góc và cạnh trong tam giác vuông )

                      \(\Rightarrow AE+DC>AE+EC\)

                      \(\Rightarrow AE+DC>AC\) 

                      \(\Rightarrow AE+BD+DC>AC+BD\) 

                       \(\Rightarrow AE+BC>BD+AC\)  

                       \(\Rightarrow AH+BC>AB+AC\)( đpcm )

 Mọi người có thể tham khảo.

Bình luận (0)
RH
Xem chi tiết