Tìm hệ số a,b để \(x^4+x^3+ax^2+4x+b\)chia hết cho \(x^2-2x+2\)
Tìm hệ số a,b,c để
a) x^3+ax+b chia hết cho x^2+2x -2
b)ax^3+bx^2+5x-50 chia hết cho x^2+3x-10
Mình sẽ làm cách chia nha còn bạn mún cách nào thì bảo mình làm lại
a)
Để \(x^3+ax+b\)chia hết cho \(x^2+2x-2\)
\(\Leftrightarrow\hept{\begin{cases}a+2+4=0\\b-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=-6\\b=4\end{cases}}}\)
Vậy \(\hept{\begin{cases}a=-6\\b=4\end{cases}}\)để \(x^3+ax+b\)chia hết cho \(x^2+2x-2\)
b) dùng phương pháp xét giá trị riêng
Đặt \(f\left(x\right)=ax^3+bx^2+5x-50\)
Ta có: \(f\left(x\right)\)chia hết cho\(x^2+3x-10\)
\(\Rightarrow f\left(x\right)=\left(x^2+3x-10\right).q\left(x\right)\)
\(\Rightarrow f\left(2\right)=\left(2^2+2.3-10\right).q\left(2\right)\)
\(=0\)
\(\Leftrightarrow a.2^3+b.2^2+5.2-50=0\)
\(\Leftrightarrow8a+4b-40=0\)
\(\Leftrightarrow4\left(2a+b-10\right)=0\)
\(\Leftrightarrow2a+b=10\left(1\right)\)
Lai có : \(f\left(-5\right)=\left[\left(-5\right)^2+3.\left(-5\right)-10\right].q\left(-5\right)\)
\(=0\)
\(\Leftrightarrow a.\left(-5\right)^3+b.\left(-5\right)^2+5.\left(-5\right)-50=0\)
\(\Leftrightarrow-125a+25b-25-50=0\)
\(\Leftrightarrow-125a+25b-75=0\)
\(\Leftrightarrow25\left(-5a+b-3\right)=0\)
\(\Leftrightarrow-5a+b=3\left(2\right)\)
Lấy (1) trừ (2) ta được: \(\left(2a+b\right)-\left(-5a+b\right)=10-3\)
\(\Leftrightarrow7a=7\)
\(\Leftrightarrow a=1\)
Thay a=1 vào (1 ) ta được: b=8
Vậy a=1 và b=8
Tìm a và b để đa thức x^4+x^3+ax^2+4x+b chia hết cho x^2-2x+2
xác định hệ số a, b
a, 10x^2-7x +a chia hết cho 2x-3
b, 2x^2+ax+1 chia cho x-3 dư 3
c, ax^5+5x^4-9 chia hết cho (x-1)^2
d, x^4+4 chia hết cho x^2+ax+b
e, x^2+ax+b chia hết cho x^2+x-2
a)tìm a,b để x4+2x3-4x2+ax+b chia hết cho x2-1
b)tìm số nguyên n để 2n2+5n-1 chia hết cho 2n-1
Bài 1: Xác định a,b để
a) 10x^2 - 7x + a chia hết 2x-3
b) 2x^2 + ax +1 chia cho x-3 dư 4
c) x^3 + ax^2 - 4 chia hết cho x^2 + 4x +4
Xác định hệ số a, b sao cho:
\(x^3+ax^2-4\) chia hết cho \(x^2+4x+4\)
\(x^3+ax+b\) chia hết cho \(x^2-2x-2\)
a: \(\Leftrightarrow x^3+4x^2+4x+\left(a-4\right)x^2+\left(4a-16\right)x+\left(4a-16\right)+\left(-4a+12\right)x-4a+12⋮x^2+4x+4\)
=>-4a+12=0
=>a=3
b: \(\Leftrightarrow x^3-2x^2-2x+2x^2-4x-4+\left(a+6\right)x+b+4⋮x^2-2x-2\)
=>a+6=0 và b+4=0
=>a=-6; b=-4
1) tìm số dư của các phép chia sâu đây :
a) x^4 -2 chia cho x^2+1
b)x^4+x^3+x^2+x chia cho x^2-1
c) x^99+x^55+x^11+x+7 cho x^2+1
2) tìm a để đa thức : x^2-3x+a chia hết cho x+2
4. tìm a và b để x^4+x^3+ax^2+4x+b chi hết cho x^2-2x+2
5. tìm số dư trong phép chia (x+2)(x+3)(x+4)(x+5)+2018 cho x^2 + 7x+3
Cho hoi dap de hoi chi khong duoc noi lung tung day la pham loi trong hoi dap
tìm a và b để đa thức f(x) chia hết cho g(x) biết: f(x)=x^4+x^3+ax^2+4x+b và g(x)=x^2-2x+2
Lời giải:
$f(x)=x^4+x^3+ax^2+4x+b=x^2(x^2-2x+2)+3x(x^2-2x+2)+(a+4)x^2-2x+b$
$=(x^2+3x)(x^2-2x+2)+(a+4)(x^2-2x+2)+2(a+3)x-2(a+4)+b$
$=(x^2+3x+a+4)(x^2-2x+2)+2(a+3)x-2(a+4)+b$
$=(x^2+3x+a+4)g(x)+2(a+3)x-2(a+4)+b$
Để $f(x)\vdots g(x)$ thì:
$2(a+3)x-2(a+4)+b=0,\forall x$
$\Rightarrow a+3=-2(a+4)+b=0$
$\Rightarrow a=-3; b=2$
xác định hệ số a b c sao cho đa thức f(x)= 2x^4+ax^2 +bx+c chia hết cho x-2 khi chia f(x) cho x^2-4x+3 thì được phần dư là -x+2
\(f\left(x\right)=2x^4+ax^2+bx+c\)
\(=2x^4-4x^3+4x^3-8x^2+\left(a+8\right)x^2-x\left(2a+16\right)+\left(2a+16+b\right)x-2\left(2a+16+b\right)+4a+32+2b+c\)
\(=\left(x-2\right)\left(2x^3+4x^2+x\left(a+8\right)+2a+16+b\right)+4a+2b+32+c\)
=>\(\dfrac{f\left(x\right)}{x-2}=2x^3+4x^2+x\left(a+8\right)+2a+16+b+\dfrac{4a+2b+32+c}{x-2}\)
f(x) chia hết cho x-2 nên \(4a+2b+32+c=0\)(1)
\(f\left(x\right)=2x^4+ax^2+bx+c\)
\(=2x^4-4x^3+6x^2+4x^3-16x^2+12x+\left(a+10\right)x^2-4x\left(a+10\right)+3a+30+x\left(4a+28+b\right)+c-3a-30\)
\(=\left(x^2-4x+3\right)\left(2x^2+4x+a+10\right)\)+x(4a+28+b)+c-3a-30
f(x) chia cho x2-4x+3 dư -x+2 nên ta có:
\(\left\{{}\begin{matrix}4a+28+b=-1\\c-3a-30=2\end{matrix}\right.\)(2)
Từ (1),(2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}4a+2b+32+c=0\\4a+b+28=-1\\c-3a=32\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4a+2b+c=-32\\4a+b=-29\\-3a+c=32\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b+c=-3\\-3a+c=32\\4a+b=-29\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+3a=-35\\4a+b=-29\\b+c=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-a=-6\\4a+b=-29\\b+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=-29-4a=-29-4\cdot6=-53\\c=-3-b=-3-\left(-53\right)=50\end{matrix}\right.\)