Gọi thương là \(cx^2+dx+e\)
\(\left(cx^2+dx+e\right)\left(x^2-2x+2\right)=cx^4-2cx^3+2cx^2+dx^3-2dx^2+2dx+ex^2-2ex+2e\)
\(=cx^4+x^3\left(d-2c\right)+x^2\left(2c-2d+e\right)+x\left(2d-2e\right)+2e\)
Đồng nhất hệ số
\(\hept{\begin{cases}c=1;d-2c=1\Leftrightarrow d=3\\2d-2e=4\Leftrightarrow e=1;b=2e\Leftrightarrow b=2\\2c-2d+e=a\Leftrightarrow a=-3\end{cases}}\)
Vậy a=-3;b=2