Những câu hỏi liên quan
DH
Xem chi tiết
KB
17 tháng 12 2017 lúc 19:07

Ta có:\(\left(x-1\right)\left(x-3\right)\left(x+5\right)\ge0\)

\(\Rightarrow\left(x^2-4x+3\right)\left(x+5\right)\ge0\).Ta có 2 trường hợp:

TH1:\(\hept{\begin{cases}x^2-4x+3\ge0\\x+5\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2-4x+4\ge1\\x+5\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^2\ge1\\x+5\ge0\end{cases}}\).Ta lại có 2 trường hợp:

                               Với  \(\hept{\begin{cases}x-2\ge1\\x+5\ge0\end{cases}}\)\(\Rightarrow x\ge3\)

                             Với \(\hept{\begin{cases}x-2\le1\\x+5\ge0\end{cases}}\)\(\Rightarrow-5\le x\le3\Rightarrow x\in\left\{-5,-4,-3\right\}\)

TH2:\(\hept{\begin{cases}x^2-4x+3\le0\\x+5\le0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^2\le1\\x+5\le0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x-2\le1\\x+5\le0\end{cases}}\)\(\Rightarrow x\le-5\)

Vậy....................

Bình luận (0)
QL
Xem chi tiết
HM
23 tháng 9 2023 lúc 10:57

a) Ta có: \(2x + 3 \ge 0 \Leftrightarrow x \ge \frac{{ - 3}}{2}\)

\( \Rightarrow \) Tập hợp E là: \(E = \left\{ {x \in \mathbb{R}|x \ge \frac{{ - 3}}{2}} \right\}\)

và \( - x + 5 \ge 0 \Leftrightarrow x \le 5\)

\( \Rightarrow \) Tập hợp G là \(G = \left\{ {x \in \mathbb{R}|x \le 5} \right\}\)

\( \Rightarrow E \cap G = \){\(x \in \mathbb{R}|\)\(x \ge \frac{{ - 3}}{2}\) và \(x \le 5\)} \( = \left\{ {x \in \mathbb{R}|\frac{{ - 3}}{2} \le x \le 5} \right\}\)

Vậy tập hợp D \( = \left\{ {x \in \mathbb{R}|\frac{{ - 3}}{2} \le x \le 5} \right\} = [\frac{{ - 3}}{2}; 5]\)

b) Ta có: \(x + 2 > 0 \Leftrightarrow x>-2\)

\( \Rightarrow E = \left\{ {x \in \mathbb{R}|x >-2 }\right\}\)

và \( 2x - 9 < 0 \Leftrightarrow x < \frac{9}{2}\)

\( \Rightarrow G = \left\{ {x \in \mathbb{R}|x < \frac{9}{2}} \right\}\)

\( \Rightarrow E \cap G = \){\(x \in \mathbb{R}|\)\(x > -2 \) và \(x < \frac{9}{2}\)} \( = \left\{ {x \in \mathbb{R}|-2<x< {9\over 2} } \right\}\)

Vậy \( D= \left\{ {x \in \mathbb{R}|-2<x< {9\over 2}} \right\}=(-2;{9\over 2})\)

Bình luận (0)
MA
Xem chi tiết
H24
Xem chi tiết
CL
16 tháng 12 2017 lúc 20:41

ko biết làm thật a bạn

^_^

hỏi co vui thôi

Bình luận (0)
H24
Xem chi tiết
NT
17 tháng 9 2017 lúc 8:52

Vậy lx-yl và y đều phải bằng 0

Vậy x=y=0

lx-yl+y=l0-0l+0=0

Bình luận (0)
H24
17 tháng 9 2017 lúc 9:02

bạn có thể trả lời cụ thể hơn được ko, mình ko hiểu lắm

Bình luận (0)
NA
Xem chi tiết
RH
23 tháng 10 2021 lúc 21:44

2x+1=9

2x=8

x=4(thỏa)

Bình luận (0)
NT
23 tháng 10 2021 lúc 21:45

\(\sqrt{2x+1}=3\)

nên 2x+1=9

hay x=4

Bình luận (0)
1N
Xem chi tiết
NT
28 tháng 8 2023 lúc 5:06

a: 


Sửa đề: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+3}{9-x}\right)\cdot\left(\dfrac{\sqrt{x}-7}{\sqrt{x}+1}+1\right)\)

\(P=\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\right)\cdot\dfrac{\sqrt{x}-7+\sqrt{x}+1}{\sqrt{x}+1}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\cdot\dfrac{2\sqrt{x}-6}{\sqrt{x}+1}\)

\(=\dfrac{-3\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{2}{\sqrt{x}+1}=\dfrac{-6}{\sqrt{x}+3}\)

b: P>=1/2

=>P-1/2>=0

=>\(\dfrac{-6}{\sqrt{x}+3}-\dfrac{1}{2}>=0\)

=>\(\dfrac{-12-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}>=0\)

=>\(-\sqrt{x}-15>=0\)

=>\(-\sqrt{x}>=15\)

=>căn x<=-15

=>\(x\in\varnothing\)

c: căn x+3>=3

=>6/căn x+3<=6/3=2

=>P>=-2

Dấu = xảy ra khi x=0

Bình luận (0)
NL
Xem chi tiết
NV
Xem chi tiết
XO
17 tháng 4 2023 lúc 12:17

Đặt \(A=\dfrac{x}{x+2}=1-\dfrac{2}{x+2}\)

do \(x\ge0\Leftrightarrow x+2\ge2\Leftrightarrow\dfrac{1}{x+2}\le\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{-1}{x+2}\ge-\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{-2}{x+2}\ge-1\Leftrightarrow A=1-\dfrac{2}{x+2}\ge0\)

Dấu "=" xảy ra khi x = 0

\(\Rightarrow A_{min}=0\) khi x = 0

Bình luận (0)