Tìm x biết
|x|=|-3| (với x\(\ge\)0)
Tìm các số nguyên x biết:
( x- 1)( x- 3)( x+ 5)\(\ge\) 0.
Ta có:\(\left(x-1\right)\left(x-3\right)\left(x+5\right)\ge0\)
\(\Rightarrow\left(x^2-4x+3\right)\left(x+5\right)\ge0\).Ta có 2 trường hợp:
TH1:\(\hept{\begin{cases}x^2-4x+3\ge0\\x+5\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2-4x+4\ge1\\x+5\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^2\ge1\\x+5\ge0\end{cases}}\).Ta lại có 2 trường hợp:
Với \(\hept{\begin{cases}x-2\ge1\\x+5\ge0\end{cases}}\)\(\Rightarrow x\ge3\)
Với \(\hept{\begin{cases}x-2\le1\\x+5\ge0\end{cases}}\)\(\Rightarrow-5\le x\le3\Rightarrow x\in\left\{-5,-4,-3\right\}\)
TH2:\(\hept{\begin{cases}x^2-4x+3\le0\\x+5\le0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^2\le1\\x+5\le0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x-2\le1\\x+5\le0\end{cases}}\)\(\Rightarrow x\le-5\)
Vậy....................
Tìm \(D = E \cap G\) biết E và G lần lượt là tập nghiệm của hai bất phương trình trong mỗi trường hợp sau:
a) \(2x + 3 \ge 0\) và \( - x + 5 \ge 0\)
b) \(x + 2 > 0\) và \(2x - 9 < 0\)
a) Ta có: \(2x + 3 \ge 0 \Leftrightarrow x \ge \frac{{ - 3}}{2}\)
\( \Rightarrow \) Tập hợp E là: \(E = \left\{ {x \in \mathbb{R}|x \ge \frac{{ - 3}}{2}} \right\}\)
và \( - x + 5 \ge 0 \Leftrightarrow x \le 5\)
\( \Rightarrow \) Tập hợp G là \(G = \left\{ {x \in \mathbb{R}|x \le 5} \right\}\)
\( \Rightarrow E \cap G = \){\(x \in \mathbb{R}|\)\(x \ge \frac{{ - 3}}{2}\) và \(x \le 5\)} \( = \left\{ {x \in \mathbb{R}|\frac{{ - 3}}{2} \le x \le 5} \right\}\)
Vậy tập hợp D \( = \left\{ {x \in \mathbb{R}|\frac{{ - 3}}{2} \le x \le 5} \right\} = [\frac{{ - 3}}{2}; 5]\)
b) Ta có: \(x + 2 > 0 \Leftrightarrow x>-2\)
\( \Rightarrow E = \left\{ {x \in \mathbb{R}|x >-2 }\right\}\)
và \( 2x - 9 < 0 \Leftrightarrow x < \frac{9}{2}\)
\( \Rightarrow G = \left\{ {x \in \mathbb{R}|x < \frac{9}{2}} \right\}\)
\( \Rightarrow E \cap G = \){\(x \in \mathbb{R}|\)\(x > -2 \) và \(x < \frac{9}{2}\)} \( = \left\{ {x \in \mathbb{R}|-2<x< {9\over 2} } \right\}\)
Vậy \( D= \left\{ {x \in \mathbb{R}|-2<x< {9\over 2}} \right\}=(-2;{9\over 2})\)
Tìm x để P nhỏ nhất (tìm min )biết P=\(\frac{2\sqrt{x}-1}{\sqrt{x}+2}\)( với x\(\ge\)0)
1)a)|x-11| +11-x=0
b) 4x+5-|x+3|=11 với x\(\ge\)-3
2) tìm số tự nhiên x,y biết:
x2 + 2xy=100
nhanh hộ
ko biết làm thật a bạn
^_^
hỏi co vui thôi
tìm x biết /x-y/+y=0 và x\(\ge\)0
tìm x, biết \(\sqrt{2x+1}=3\) với x\(\ge\dfrac{-1}{2}\)
\(\sqrt{2x+1}=3\)
nên 2x+1=9
hay x=4
Bài 4: Cho biểu thức: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+3}{9-x}\right).\left(\dfrac{\sqrt{x}-7}{\sqrt{x+1}}+1\right)\) với x \(\ge\) 0 và x \(\ne\) 9
a) Rút gọn P
b) Tìm các giá trị của x để P \(\ge\) \(\dfrac{1}{2}\)
c) Tìm GTNN của P
Cần gấp !!!
a:
Sửa đề: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+3}{9-x}\right)\cdot\left(\dfrac{\sqrt{x}-7}{\sqrt{x}+1}+1\right)\)
\(P=\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\right)\cdot\dfrac{\sqrt{x}-7+\sqrt{x}+1}{\sqrt{x}+1}\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\cdot\dfrac{2\sqrt{x}-6}{\sqrt{x}+1}\)
\(=\dfrac{-3\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{2}{\sqrt{x}+1}=\dfrac{-6}{\sqrt{x}+3}\)
b: P>=1/2
=>P-1/2>=0
=>\(\dfrac{-6}{\sqrt{x}+3}-\dfrac{1}{2}>=0\)
=>\(\dfrac{-12-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}>=0\)
=>\(-\sqrt{x}-15>=0\)
=>\(-\sqrt{x}>=15\)
=>căn x<=-15
=>\(x\in\varnothing\)
c: căn x+3>=3
=>6/căn x+3<=6/3=2
=>P>=-2
Dấu = xảy ra khi x=0
Tìm GTLN và GTNN của A= 4√x/(3x -3√x +3) với ĐKXĐ: x \(\ge\)0
tìm giá trị nhỏ nhất với x \(\ge\) 0
\(\dfrac{x}{x+2}\)
Đặt \(A=\dfrac{x}{x+2}=1-\dfrac{2}{x+2}\)
do \(x\ge0\Leftrightarrow x+2\ge2\Leftrightarrow\dfrac{1}{x+2}\le\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{-1}{x+2}\ge-\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{-2}{x+2}\ge-1\Leftrightarrow A=1-\dfrac{2}{x+2}\ge0\)
Dấu "=" xảy ra khi x = 0
\(\Rightarrow A_{min}=0\) khi x = 0