Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
CN
Xem chi tiết
PK
Xem chi tiết
PC
Xem chi tiết
AH
4 tháng 1 2023 lúc 19:13

Lời giải:

Ta thấy: $x^2\geq 0$ với mọi $x$ nên $x^2+9+2019\geq 9+2019=2028$

$\Rightarrow A=\sqrt{x^2+9+2019}\geq \sqrt{2028}$

Vậy GTNN của $A$ là $\sqrt{2028}$ khi $x=0$

Bình luận (0)
QV
Xem chi tiết
LL
12 tháng 9 2021 lúc 13:04

a) \(A=x^2+3x+4=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

\(minA=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{3}{2}\)

b) \(B=2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)

\(minB=\dfrac{7}{8}\Leftrightarrow x=\dfrac{1}{4}\)

c) \(C=5x^2+2x-3=5\left(x+\dfrac{1}{5}\right)^2-\dfrac{16}{5}\ge-\dfrac{16}{5}\)

\(minC=-\dfrac{16}{5}\Leftrightarrow x=-\dfrac{1}{5}\)

d) \(D=4x^2+4x-24=\left(2x+1\right)^2-25\ge-25\)

\(minD=-25\Leftrightarrow x=-\dfrac{1}{2}\)

e) \(E=x^2+6x-11=\left(x+3\right)^2-20\ge-20\)

\(minE=-20\Leftrightarrow x=-3\)

f) \(G=\dfrac{1}{4}x^2+x-\dfrac{1}{3}=\left(\dfrac{1}{2}x+1\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)

\(minG=-\dfrac{4}{3}\Leftrightarrow x=-2\)

Bình luận (11)
NT
12 tháng 9 2021 lúc 13:01

a: Ta có: \(A=x^2+3x+4\)

\(=x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)

d: Ta có: \(D=4x^2+4x-24\)

\(=4x^2+4x+1-25\)

\(=\left(2x+1\right)^2-25\ge-25\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

e: ta có: \(E=x^2+6x-11\)

\(=x^2+6x+9-20\)

\(=\left(x+3\right)^2-20\ge-20\forall x\)

Dấu '=' xảy ra khi x=-3

Bình luận (0)
QV
12 tháng 9 2021 lúc 15:59

vâng ạ

 

Bình luận (0)
NH
Xem chi tiết
MN
Xem chi tiết
TA
15 tháng 5 2016 lúc 10:54

ta có |x+3|>=0;|2y-14|>=0

=>|x+3|+|2y-14|>=0

=>S>=2016

dấu "=" xảy ra khi và chỉ khi (x+3)(2y-14)=0

=>x+3=0 và 2y-14=0

x=-3 và y=7

Vậy GTNN của S=2016 khi x=-3 và y=7

Bình luận (0)
TH
Xem chi tiết
HH
21 tháng 10 2015 lúc 15:19

Vì bội trung nhỏ nhất là 900 nên số lớn là 900

Số bé là 3

Bình luận (0)
H24
Xem chi tiết
NL
17 tháng 4 2022 lúc 12:14

\(\dfrac{3x^2-1}{x^2+2}=\dfrac{6x^2-2}{2\left(x^2+2\right)}=\dfrac{7x^2-\left(x^2+2\right)}{2\left(x^2+2\right)}=\dfrac{7x^2}{2\left(x^2+2\right)}-\dfrac{1}{2}\ge=-\dfrac{1}{2}\)

GTNN của biểu thức là \(-\dfrac{1}{2}\), xảy ra khi \(x=0\)

Biểu thức ko tồn tại GTLN

Bình luận (0)
H24
Xem chi tiết