Tìm giá trị nhỏ nhất của tích xy biết rằng: 5x2+4/x2+y2=5xy
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm giá trị nhỏ nhất của A biết:
\(|5z-3x|+|7x-2y|+|xy+yz+zx-2480|\)
Bài 1 :
a) Tìm giá trị nhỏ nhất của A = l x - 2 l + 5
b) Tìm giá trị nhỏ nhất của B = 12 - l x + 4 l
c) Tìm giá trị nhỏ nhất của C = (căn bậc hai x) + 1
Tìm giá trị nhỏ nhất của biểu thức A biết :
A= \(\sqrt[]{x^2+9+2019}\)
Lời giải:
Ta thấy: $x^2\geq 0$ với mọi $x$ nên $x^2+9+2019\geq 9+2019=2028$
$\Rightarrow A=\sqrt{x^2+9+2019}\geq \sqrt{2028}$
Vậy GTNN của $A$ là $\sqrt{2028}$ khi $x=0$
Bài 1 : Tìm giá trị nhỏ nhất của các biểu thức sau :
a, A = x2 + 3x + 4 | d, D = 4x2+ 4x - 24 |
b, B = 2x2 - x + 1 | e, E = x2 + 6x - 11 |
c, C = 5x2 + 2x - 3 | g, G = \(\dfrac{1}{4}x^2+x-\dfrac{1}{3}\) |
MONG MỌI NGƯỜI GIÚP VỚI Ạ !!! EM CẦN GẤP !
a) \(A=x^2+3x+4=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
\(minA=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{3}{2}\)
b) \(B=2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)
\(minB=\dfrac{7}{8}\Leftrightarrow x=\dfrac{1}{4}\)
c) \(C=5x^2+2x-3=5\left(x+\dfrac{1}{5}\right)^2-\dfrac{16}{5}\ge-\dfrac{16}{5}\)
\(minC=-\dfrac{16}{5}\Leftrightarrow x=-\dfrac{1}{5}\)
d) \(D=4x^2+4x-24=\left(2x+1\right)^2-25\ge-25\)
\(minD=-25\Leftrightarrow x=-\dfrac{1}{2}\)
e) \(E=x^2+6x-11=\left(x+3\right)^2-20\ge-20\)
\(minE=-20\Leftrightarrow x=-3\)
f) \(G=\dfrac{1}{4}x^2+x-\dfrac{1}{3}=\left(\dfrac{1}{2}x+1\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)
\(minG=-\dfrac{4}{3}\Leftrightarrow x=-2\)
a: Ta có: \(A=x^2+3x+4\)
\(=x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)
d: Ta có: \(D=4x^2+4x-24\)
\(=4x^2+4x+1-25\)
\(=\left(2x+1\right)^2-25\ge-25\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
e: ta có: \(E=x^2+6x-11\)
\(=x^2+6x+9-20\)
\(=\left(x+3\right)^2-20\ge-20\forall x\)
Dấu '=' xảy ra khi x=-3
Tìm giá trị lớn nhất của tích xy biết \(|2y-x|\le2\) và \(|4x+y|\le10\)
Tìm giá trị của x, y để ;
s = I x + 3 I + I 2y - 14 I + 2016 đạt giá trị nhỏ nhất . Tìm giá trị nhỏ nhất đó .
ta có |x+3|>=0;|2y-14|>=0
=>|x+3|+|2y-14|>=0
=>S>=2016
dấu "=" xảy ra khi và chỉ khi (x+3)(2y-14)=0
=>x+3=0 và 2y-14=0
x=-3 và y=7
Vậy GTNN của S=2016 khi x=-3 và y=7
Tìm 2 số tự nhiên biết rằng tích của chúng bằng 2700, bội chung nhỏ nhất của chúng bằng 900.
Vì bội trung nhỏ nhất là 900 nên số lớn là 900
Số bé là 3
Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của các biểu thức sau
\(\dfrac{3x^2-1}{x^2+2}=\dfrac{6x^2-2}{2\left(x^2+2\right)}=\dfrac{7x^2-\left(x^2+2\right)}{2\left(x^2+2\right)}=\dfrac{7x^2}{2\left(x^2+2\right)}-\dfrac{1}{2}\ge=-\dfrac{1}{2}\)
GTNN của biểu thức là \(-\dfrac{1}{2}\), xảy ra khi \(x=0\)
Biểu thức ko tồn tại GTLN
Tìm giá trị nhỏ nhất của:
P = x^2 - y^2 - xy - x + y +1