Cho hình chữ nhật ABCD có CD=4c, BC=3cm. Gọi H là hình chiếu của C trên BD. Tính SADH
Cho hình chữ nhật ABCD có CD=4c, BC=3cm. Gọi H là hình chiếu của C trên BD. Tính SADH
Bài 1: Cho hình thang vuông ABCD có góc A = góc D = 90o , AB = 4cm , CD = 9cm. Tính BD (biết BD vuông góc với BC)
Bài 2: Cho hình thang ABCD , AB//CD , BD là đường cao của hình thang, góc A + góc C = 90o , AB= 1cm, CD= 3cm. Tính AD và BC
Bài 3: Cho hình chữ nhật ABCD, AB= 4cm, AD= 3cm. Gọi E và F là hình chiếu của A và C trên BD. Tính EF
Bài 1: Cho hình thang vuông ABCD có góc A = góc D = 90o , AB = 4cm , CD = 9cm. Tính BD (biết BD vuông góc với BC)
Bài 2: Cho hình thang ABCD , AB//CD , BD là đường cao của hình thang, góc A + góc C = 90o , AB= 1cm, CD= 3cm. Tính AD và BC
Bài 3: Cho hình chữ nhật ABCD, AB= 4cm, AD= 3cm. Gọi E và F là hình chiếu của A và C trên BD. Tính EF
Bài 1: Cho hình thang vuông ABCD có góc A = góc D = 90o , AB = 4cm , CD = 9cm. Tính BD (biết BD vuông góc với BC)
Bài 2: Cho hình thang ABCD , AB//CD , BD là đường cao của hình thang, góc A + góc C = 90o , AB= 1cm, CD= 3cm. Tính AD và BC
Bài 3: Cho hình chữ nhật ABCD, AB= 4cm, AD= 3cm. Gọi E và F là hình chiếu của A và C trên BD. Tính EF
Giúp m giải bài này nha
Cho hình chữ nhật ABCD có CD=20cm ; BC=15cm. Gọi H là hình chiếu của C trên BD. Tính diện tích tam giác ADH.
Bài 1: Cho hình thang vuông ABCD có góc A = góc D = 90o , AB = 4cm , CD = 9cm. Tính BD (biết BD vuông góc với BC)
Bài 2: Cho hình thang ABCD , AB//CD , BD là đường cao của hình thang, góc A + góc C = 90o , AB= 1cm, CD= 3cm. Tính AD và BC
Bài 3: Cho hình chữ nhật ABCD, AB= 4cm, AD= 3cm. Gọi E và F là hình chiếu của A và C trên BD. Tính EF
CÁC BN ƠI GIÚP MIK VS !!!!!!!!
Cho hình chữ nhật ABCD có: AB=8cm,BC=6cm Gọi M là hình chiếu A trên BD a, Chứng minh ∆HAD đồng dạng với ∆ ABD. Tính BC, HD b, Chứng minh HA . BD= CD . AD Dưới là ảnh hình vẽ của đề lm gig mk vs mk cần gấp
a. Xét hai tam giác vuông \(HAD\) và ABD có:
\(\left\{{}\begin{matrix}\widehat{DAH}=\widehat{DAB}\left(\text{cùng phụ }\widehat{ADB}\right)\\\widehat{DHA}=\widehat{DAB}=90^0\end{matrix}\right.\)
\(\Rightarrow\Delta HAD\sim\Delta ABD\) (g.g)
\(\Rightarrow\dfrac{HD}{AD}=\dfrac{AD}{BD}\Rightarrow HD=\dfrac{AD^2}{BD}\)
Áp dụng định lý Pitago: \(BD=\sqrt{AB^2+AD^2}=\sqrt{AB^2+BC^2}=\sqrt{8^2+6^2}=10\left(cm\right)\)
\(\Rightarrow HD=\dfrac{6^2}{10}=3,6\left(cm\right)\)
b.
Theo cmt, do hai tam giác HAD và ABD đồng dạng
\(\Rightarrow\dfrac{HA}{AB}=\dfrac{AD}{BD}\Rightarrow HA.BD=AB.AD\)
Mà ABCD là hcn \(\Rightarrow AB=CD\)
\(\Rightarrow HA.BD=CD.AD\) (đpcm)
Cho hình bình hành ABCD. Gọi O là giao điểm AC và BD; E; F; G; H lần lượt là hình chiếu của điểm O trên AB, BC, CD, DA. Tìm điều kiện của hình bình hành ABCD để tứ giác EFGH là hình chữ nhật.
Cho HCN ABCD và CD=4cm, BC=3cm. Gọi H là hình chiếu của C trên BD
a) Tính BD
b) Tính CH
c) Tính DH
Giúp mình với, mình đang cần gấp lắm
a: \(BD=\sqrt{3^2+4^2}=5\left(cm\right)\)
b: CH=3*4/5=2,4cm
c: DH=DC^2/BD=4^2/5=3,2ccm