thực hiện phép tính :
1/x(x+1)+1/(x+1)(x+2)+1/(x+2)(x+3)+1/(x+3)(x+4)+1/(x+4)(x+5)
- Bài 12: Thực hiện phép tính
1) x(1 - x) + (x - 1) ^ 2 3) (x + 2) ^ 2 - (x - 3)(x + 1)
5) (x - 2) ^ 2 + (x - 1)(x + 5)
7) (1 - 2x)(5 - 3x) + (4 - x) ^ 2
9) (x + 1) ^ 2 + (x - 2)(x + 2) - 4x
11) (x + 4) ^ 2 + (x + 5)(x - 5) - 2x(x + 1)
13) (x - 1) ^ 2 - 2(x + 3)(x - 3) + 4x(x - 4)
2) (x - 3) ^ 2 - x ^ 2 + 10x - 7
4) (x + 4)(x - 2) - (x - 3) ^ 2
6) (x + 3)(x - 3) - x(23 + x)
8) (x - 2)(x + 2) - (x - 3)(x + 1)
10) (x + 2) ^ 2 - (x + 3)(x - 3) + 10
12) (x - 1) ^ 2 - (x - 4)(x + 4) + (x + 3) ^ 2
14) (y - 3)(y + 3)(y ^ 2 + 9) -(y^ 2 +2)(y
Thực hiện phép tính: A, x-2 - x^2-10/x+2 B, x/y^2- xy - y/xy-x^2 C, 1/x(x-1) + 1/x-1(x-2) + 1/(x-2)(x-3) + 1/(x-3)(x-4) + 1/(x-4)(x-5) Giúp mình bài này với ạ
thực hiện phép tính
( x+2 )(1+x-x^2+x^3-x^4 ) - (1-x)(1+x+x^2+x^3+x^4 )
thực hiện phép tính :
a)2x^2+3(x-1)(x+1)-5x(x+1)
b) (8-5x)(x+2)+4(x-2)(x+1)+2(x-2)(x+2)+10
c) 4(x-1)(x+5)-(x+2)(x+5)-3(x-1)(x+2)
a) 2x^2 + 3( x-1)(x+1) - 5x(x+1)
= 2x^2 + 3( x^2 -1 ) - 5x(x+1)
= 2x^2 + 3x^2 - 3 - 5x^2 - 5x
= -5x -3
Thực hiện phép tính :
a. \(\dfrac{4}{\sqrt{x}+1}+\dfrac{2}{1-\sqrt{x}}-\dfrac{\sqrt{x}-5}{x-1}\)
b. \(\left(\dfrac{x+1}{x+2}+\dfrac{x+2}{x+3}\right):\dfrac{x+3}{x+1}\)
\(a,=\dfrac{4\sqrt{x}-4-2\sqrt{x}-2-\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\left(x\ge0;x\ne1\right)\\ =\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{1}{\sqrt{x}+1}\\ b,=\dfrac{x^2+4x+3+x^2+4x+4}{\left(x+2\right)\left(x+3\right)}\cdot\dfrac{x+1}{x+3}\left(x\ne-1;x\ne-2;x\ne-3\right)\\ =\dfrac{\left(2x^2+8x+7\right)\left(x+1\right)}{\left(x+2\right)\left(x+3\right)^2}\)
Thực hiện phép tính :
a. \(\dfrac{4}{\sqrt{x}+1}+\dfrac{2}{1-\sqrt{x}}-\dfrac{\sqrt{x}-5}{x-1}\)
b. \(\left(\dfrac{x+1}{x+2}+\dfrac{x+2}{x+3}\right):\dfrac{x+3}{x+1}\)
\(a,\dfrac{4}{\sqrt{x}+1}+\dfrac{2}{1-\sqrt{x}}-\dfrac{\sqrt{x}-5}{x-1}\)
\(=\dfrac{4\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{4\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{4\sqrt{x}-4-2\sqrt{x}-2-\sqrt{x}+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{1}{\sqrt{x}+1}\)
\(b,\left(\dfrac{x+1}{x+2}+\dfrac{x+2}{x+3}\right):\dfrac{x+3}{x+1}\)
\(=\left(\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}+\dfrac{\left(x+2\right)^2}{\left(x+2\right)\left(x+3\right)}\right).\dfrac{x+1}{x+3}\)
\(=\left(\dfrac{x^2+4x+3}{\left(x+2\right)\left(x+3\right)}+\dfrac{x^2+4x+4}{\left(x+2\right)\left(x+3\right)}\right).\dfrac{x+1}{x+3}\)
\(=\dfrac{x^2+4x+3+x^2+4x+4}{\left(x+2\right)\left(x+3\right)}.\dfrac{x+1}{x+3}\)
\(=\dfrac{2x^2+8x+7}{\left(x+2\right)\left(x+3\right)}.\dfrac{x+1}{x+3}\)
\(=\dfrac{\left(2x^2+8x+7\right)\left(x+1\right)}{\left(x+2\right)\left(x+3\right)^2}\)
\(=\dfrac{\left(2x^2+8x+7\right).x+2x^2+8x+7}{\left(x+2\right)\left(x+3\right)^2}\)
\(=\dfrac{2x^3+8x^2+7x+2x^2+8x+7}{\left(x+2\right)\left(x+3\right)^2}\)
\(=\dfrac{2x^3+10x^2+15x+7}{\left(x+2\right)\left(x+3\right)^2}\)
Bài 4: thực hiện các phép tính, sau đó tính giá trị biểu thức:
b, B=(x+1)(x^7-x^6+x^5-x^4+x^3-x^2+x-1) với x=2
c, C=(x+1)(x^6-x^5+x^4-x^3+x^2-x+1) với x=2
d, D=2x(10x^2-5x-2)-5x(4x^2-2x-1) với x=-5
Bài 5: thực hiện phép tính, sau đó tính giá trị biểu thức:
a, A=(x^3-x^2y+xy^2-y^3)(x+y) với x=2,y=-1/2
b, B=(a-b)(a^4+a^3b+a^2b^2+ab^3+b^4) với a=3,b=-2
c, (x^2-2xy+2y^2)(x^2+y^2)+2x^3y-3x^2y^2+2xy^3 với x=-1/2;y=-1/2
Trả lời:
Bài 4:
b, B = ( x + 1 ) ( x7 - x6 + x5 - x4 + x3 - x2 + x - 1 )
= x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + x7 - x6 + x5 - x4 + x3 - x2 + x - 1
= x8 - 1
Thay x = 2 vào biểu thức B, ta có:
28 - 1 = 255
c, C = ( x + 1 ) ( x6 - x5 + x4 - x3 + x2 - x + 1 )
= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1
= x7 + 1
Thay x = 2 vào biểu thức C, ta có:
27 + 1 = 129
d, D = 2x ( 10x2 - 5x - 2 ) - 5x ( 4x2 - 2x - 1 )
= 20x3 - 10x2 - 4x - 20x3 + 10x2 + 5x
= x
Thay x = - 5 vào biểu thức D, ta có:
D = - 5
Bài 5:
a, A = ( x3 - x2y + xy2 - y3 ) ( x + y )
= x4 + x3y - x3y - x2y2 + x2y2 + xy3 - xy3 - y4
= x4 - y4
Thay x = 2; y = - 1/2 vào biểu thức A, ta có:
A = 24 - ( - 1/2 )4 = 16 - 1/16 = 255/16
b, B = ( a - b ) ( a4 + a3b + a2b2 + ab3 + b4 )
= a5 + a4b + a3b2 + a2b3 + ab4 - ab4 - a3b2 - a2b3 - ab4 - b5
= a5 + a4b - ab4 - b5
Thay a = 3; b = - 2 vào biểu thức B, ta có:
B = 35 + 34.( - 2 ) - 3.( - 2 )4 - ( - 2 )5 = 243 - 162 - 48 + 32 = 65
c, ( x2 - 2xy + 2y2 ) ( x2 + y2 ) + 2x3y - 3x2y2 + 2xy3
= x4 + x2y2 - 2x3y - 2xy3 + 2x2y2 + 2y4 + 2x3y - 3x2y2 + 2xy3
= x4 + 2y4
Thay x = - 1/2; y = - 1/2 vào biểu thức trên, ta có:
( - 1/2 )4 + 2.( - 1/2 )4 = 1/16 + 2. 1/16 = 1/16 + 1/8 = 3/16
Bài 4:Tìm x, biết:
1/ (x-1)(x^2+x+1)-x^3-6x=11
2/ 16x^2-(3x-4)^2=0
3/ x^3-x^2+3-3x=0
4/ x-1/x+2=x+2/x+1
5/1/x+2/x+1=0
6/ 9-x^2/x : (x-3)=1
Bài 4:
1: \(\left(x-1\right)\left(x^2+x+1\right)-x^3-6x=11\)
=>\(x^3-1-x^3-6x=11\)
=>-6x-1=11
=>-6x=11+1=12
=>\(x=\dfrac{12}{-6}=-2\)
2: \(16x^2-\left(3x-4\right)^2=0\)
=>\(\left(4x\right)^2-\left(3x-4\right)^2=0\)
=>\(\left(4x-3x+4\right)\left(4x+3x-4\right)=0\)
=>(x+4)(7x-4)=0
=>\(\left[{}\begin{matrix}x+4=0\\7x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{4}{7}\end{matrix}\right.\)
3: \(x^3-x^2-3x+3=0\)
=>\(\left(x^3-x^2\right)-\left(3x-3\right)=0\)
=>\(x^2\left(x-1\right)-3\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x^2-3\right)=0\)
=>\(\left[{}\begin{matrix}x-1=0\\x^2-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)
4: \(\dfrac{x-1}{x+2}=\dfrac{x+2}{x+1}\)(ĐKXĐ: \(x\notin\left\{-2;-1\right\}\))
=>\(\left(x+2\right)^2=\left(x-1\right)\left(x+1\right)\)
=>\(x^2+4x+4=x^2-1\)
=>4x+4=-1
=>4x=-5
=>\(x=-\dfrac{5}{4}\left(nhận\right)\)
5: ĐKXĐ: \(x\notin\left\{0;-1\right\}\)
\(\dfrac{1}{x}+\dfrac{2}{x+1}=0\)
=>\(\dfrac{x+1+2x}{x\left(x+1\right)}=0\)
=>3x+1=0
=>3x=-1
=>\(x=-\dfrac{1}{3}\left(nhận\right)\)
6: ĐKXĐ: \(x\notin\left\{0;3\right\}\)
\(\dfrac{9-x^2}{x}:\left(x-3\right)=1\)
=>\(\dfrac{-\left(x^2-9\right)}{x\left(x-3\right)}=1\)
=>\(\dfrac{-\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}=1\)
=>\(\dfrac{-x-3}{x}=1\)
=>-x-3=x
=>-2x=3
=>\(x=-\dfrac{3}{2}\left(nhận\right)\)
thực hiện phép tính :
a) 5x+10/10xy^2 nhân 12x/x+2
b) x-4/3x-1 nhân 9x-3/x^2-16
c)4x+2/(x+4)^2/ chia 3(x+3)/x+4
d)5x-5/3x+3 chia x-1/x+1
a: \(=\dfrac{5\left(x+2\right)}{10xy^2}\cdot\dfrac{12x}{x+2}=\dfrac{60x}{10xy^2}=\dfrac{6}{y^2}\)
b: \(=\dfrac{x-4}{3x-1}\cdot\dfrac{3\left(3x-1\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{3}{x+4}\)
c: \(=\dfrac{2\left(2x+1\right)}{\left(x+4\right)^2}\cdot\dfrac{\left(x+4\right)}{3\left(x+3\right)}=\dfrac{2\left(2x+1\right)}{3\left(x+3\right)\left(x+4\right)}\)
d: \(=\dfrac{5\left(x-1\right)}{3\left(x+1\right)}\cdot\dfrac{x+1}{x-1}=\dfrac{5}{3}\)