Những câu hỏi liên quan
NK
Xem chi tiết
MS
9 tháng 12 2018 lúc 13:24

\(\dfrac{1}{x^2+7x+10}+\dfrac{1}{x^2+13x+40}+\dfrac{1}{x^2+19x+88}+\dfrac{1}{x^2+25x+154}\)

\(=\dfrac{1}{\left(x+2\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+8\right)}+\dfrac{1}{\left(x+8\right)\left(x+11\right)}+\dfrac{1}{\left(x+11\right)\left(x+14\right)}\)

\(=\dfrac{1}{x+2}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+8}+\dfrac{1}{x+8}-\dfrac{1}{x+11}+\dfrac{1}{x+11}-\dfrac{1}{x+14}\)

\(=\dfrac{1}{x+2}-\dfrac{1}{x+14}\)

Bình luận (2)
TM
Xem chi tiết
ND
26 tháng 12 2017 lúc 21:25

a.

\(\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2-11x+28}+\dfrac{1}{x^2-19x+84}=\dfrac{1}{4}\\ \Rightarrow\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-7\right)}+\dfrac{1}{\left(x-7\right)\left(x-12\right)}=\dfrac{1}{4}\\ \Rightarrow\dfrac{1}{x-3}-\dfrac{1}{x-12}=\dfrac{1}{4}\\ \Rightarrow\dfrac{-9}{\left(x-3\right)\left(x-12\right)}=\dfrac{1}{4}\\ \Rightarrow x^2-15x+36=-36\\ \)

Tự giải tiếp

Bình luận (0)
H24
Xem chi tiết
NT
10 tháng 11 2023 lúc 20:31

a: \(\lim\limits_{x\rightarrow-2}\dfrac{4-x^2}{2x^2+7x+6}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{\left(2-x\right)\left(2+x\right)}{2x^2+4x+3x+6}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{\left(2-x\right)\left(x+2\right)}{\left(x+2\right)\left(2x+3\right)}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{2-x}{2x+3}=\dfrac{2-\left(-2\right)}{2\cdot\left(-2\right)+3}=\dfrac{4}{-4+3}=-4\)

b: \(\lim\limits_{x\rightarrow4}\dfrac{2x^2-13x+20}{x^3+64}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{2x^2-8x-5x+20}{\left(x+4\right)\left(x^2-4x+16\right)}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{\left(x-4\right)\left(2x-5\right)}{x^3+64}\)

\(=\dfrac{\left(4-4\right)\left(2\cdot4-5\right)}{4^3+64}=0\)

c: \(\lim\limits_{x\rightarrow-1}\dfrac{2x^2+8x+6}{-2x^2+7x+9}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{2x^2+2x+6x+6}{-2x^2-2x+9x+9}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(2x+6\right)}{-2x\left(x+1\right)+9\left(x+1\right)}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(2x+6\right)}{\left(x+1\right)\left(-2x+9\right)}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{2x+6}{-2x+9}=\dfrac{2\cdot\left(-1\right)+6}{-2\cdot\left(-1\right)+9}\)

\(=\dfrac{4}{11}\)

Bình luận (0)
PD
Xem chi tiết
NT
10 tháng 8 2021 lúc 13:44

a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le2\end{matrix}\right.\)

b: ĐKXĐ: \(\left[{}\begin{matrix}x>\dfrac{2\sqrt{14}}{7}\\x< -\dfrac{2\sqrt{14}}{7}\end{matrix}\right.\)

c: ĐKXĐ: \(x=\dfrac{1}{3}\)

d: ĐKXĐ: \(-\dfrac{2}{3}< x\le\sqrt{3}\)

Bình luận (0)
HN
Xem chi tiết
NT
3 tháng 1 2023 lúc 14:19

a: \(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

=>\(\dfrac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)

=>(x+4)(x+7)=54

=>x^2+11x+28-54=0

=>(x+13)(x-2)=0

=>x=-13 hoặc x=2

b: \(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-...+\dfrac{1}{x+4}-\dfrac{1}{x+5}=\dfrac{1}{3}\)

=>\(\dfrac{x+5-x-1}{\left(x+5\right)\left(x+1\right)}=\dfrac{1}{3}\)

=>x^2+6x+5=12

=>x^2+6x-7=0

=>(x+7)(x-1)=0

=>x=-7 hoặc x=1

Bình luận (0)
NK
Xem chi tiết
NT
30 tháng 5 2023 lúc 10:12

a: =-1/5x^5y^2

b: =-9/7xy^3

c: =7/12xy^2z

d: =2x^4

e: =3/4x^5y

f: =11x^2y^5+x^6

Bình luận (0)
H24
Xem chi tiết
NT
13 tháng 9 2023 lúc 22:05

d: ĐKXĐ: x<>-4; x<>-5; x<>-6; x<>-7

\(PT\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

=>\(\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

=>\(\dfrac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)

=>x^2+11x+28=54

=>x^2+11x-26=0

=>(x+13)(x-2)=0

=>x=2 hoặc x=-13

e: \(\dfrac{x-241}{17}+\dfrac{x-220}{19}+\dfrac{x-195}{21}+\dfrac{x-166}{23}=10\)

\(\Leftrightarrow\left(\dfrac{x-241}{17}-1\right)+\left(\dfrac{x-220}{19}-2\right)+\left(\dfrac{x-195}{21}-3\right)+\left(\dfrac{x-166}{23}-4\right)=0\)

=>x-258=0

=>x=258

Bình luận (0)
NC
Xem chi tiết
HP
1 tháng 1 2021 lúc 17:53

Tham khảo:

Giải phương trình sau trên tập số thực: \(\frac{3(x^2+2x-3)}{\sqrt{x+4}-1}-\frac{7x^2-19x+12}{\sqrt{12-7x}}=16x^2+11x-27\) - ngọc trang

Bình luận (0)
WK
Xem chi tiết
LF
28 tháng 2 2017 lúc 12:51

\(\dfrac{2}{40}+\dfrac{2}{88}+...+\dfrac{2}{x\left(x+3\right)}=\dfrac{202}{1540}\)

\(\Leftrightarrow2\left(\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{x\left(x+3\right)}\right)=\dfrac{202}{1540}\)

\(\Leftrightarrow\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)

\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{x\left(x+3\right)}\right)=\dfrac{101}{1540}\)

\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)

\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)\(\Leftrightarrow\dfrac{1}{x+3}=\dfrac{1}{308}\)

\(\Leftrightarrow x+3=308\Leftrightarrow x=305\)

Bình luận (0)