Những câu hỏi liên quan
IF
Xem chi tiết
TT
25 tháng 10 2022 lúc 21:08

vì tổng của S chia hết cho 3 nên S chia hết cho 3. có thế cũng hỏi =))

Chúc bạn an toàn

Bình luận (0)
T6
Xem chi tiết
NT
22 tháng 12 2021 lúc 21:24

\(S=\left(1+2\right)+...+2^6\left(1+2\right)=3\left(1+...+2^6\right)⋮3\)

Bình luận (0)
Xem chi tiết
PA
27 tháng 12 2020 lúc 9:54
Mình làm được b1 thôi nha A=2+2²+2³+...+2^60 2A=2(2+2²+2³+...+2^60) 2A=2²+2³+2⁴+...+2^61 2A-A=(2²+2³+2⁴+...+2^61)-(2+2²+2³+...+2^60) A=2^61-2 Vậy A=2^61-2
Bình luận (0)
 Khách vãng lai đã xóa

Cảm ơi phạm quỳnh anh nha

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
HM
23 tháng 12 2015 lúc 22:24

S = (1+ 2)+(22 + 23 )+( 24 + 27) + (26 + 25)

S=   3+45+51+51

S=3+3.15+3.17+3.17

S=3.(1+15+17.2): hết 3

tick nha nhanh nhất nè

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 1 2017 lúc 13:39

A = 2 + 22 + 23 + 24 + ... + 219 + 220

A = (2 + 22) + (23 + 24) +... + (219 + 220)

A = 2.(1+2) + 23.(1 + 2) +... + 219.(l + 2)

A = 2.3 + 23.3 +...+ 219.3 Do đó A chia hết cho 3

Bình luận (0)
NN
8 tháng 1 2021 lúc 19:58

do đó A chia hết cho 3

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
7 tháng 1 2021 lúc 12:47

Ta có: \(A=2+2^2+2^3+2^4+...+2^{99}+91\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{97}+2^{98}+2^{99}\right)+91\)

\(=2\cdot\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)+91\)

\(=7\cdot\left(1+2^4+...+2^{97}\right)+7\cdot13\)

\(=7\cdot\left(1+2^4+...+2^{97}+13\right)⋮7\)(đpcm)

Bình luận (0)
PD
Xem chi tiết
NT
7 tháng 1 2021 lúc 12:44

Ta có: \(A=2+2^2+2^3+2^4+...+2^{99}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{97}+2^{98}+2^{99}\right)\)

\(=2\cdot\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)

\(=\left(1+2+2^2\right)\cdot\left(2+2^4+...+2^{97}\right)\)

\(=7\cdot\left(2+2^4+...+2^{97}\right)⋮7\)(đpcm)

Bình luận (0)
NT
Xem chi tiết
TK
2 tháng 1 2022 lúc 15:58

S=(1+2)+...+2^6(1+2)=3(1+...+2^6)⋮3

Bình luận (0)
QH
Xem chi tiết
NM
2 tháng 12 2021 lúc 10:59

\(S=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{95}+2^{96}\right)\\ S=\left(1+2\right)\left(2+2^3+...+2^{95}\right)\\ S=3\left(2+2^3+...+2^{95}\right)⋮3\left(1\right)\\ S=\left(2+2^2\right)+2^3\left(1+2^2+...+2^{93}\right)\\ S=8+8\left(1+2^2+...+2^{93}\right)⋮8\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow S⋮24\)

Bình luận (0)