Những câu hỏi liên quan
H24
Xem chi tiết
NL
5 tháng 11 2021 lúc 16:11

\(\left\{{}\begin{matrix}x;y;z\ge0\\x+y+z=1\end{matrix}\right.\) \(\Rightarrow0\le x;y;z\le1\)

\(\Rightarrow\left\{{}\begin{matrix}x^2\le x\\y^2\le y\\z^2\le z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x^2+x+1\le x^2+2x+1\\2y^2+y+1\le y^2+2y+1\\2z^2+z+1\le z^2+2z+1\end{matrix}\right.\)

\(\Rightarrow P\le\sqrt{\left(x+1\right)^2}+\sqrt{\left(y+1\right)^2}+\sqrt{\left(z+1\right)^2}=x+y+z+3=4\)

\(P_{max}=4\) khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và các hoán vị

Bình luận (0)
H24
Xem chi tiết
NC
5 tháng 5 2021 lúc 11:09

pro rồi thì bạn cần gì mình giải nhỉ

??

Bình luận (1)
NL
5 tháng 5 2021 lúc 16:54

\(A=x-2y+3\Rightarrow x=A+2y-3\)

\(\Rightarrow\left(2y+A-3\right)^2+y\left(A+2y-3\right)+2y^2=1\)

\(\Leftrightarrow8y^2+\left(5A-15\right)y+A^2-6A+8=0\)

\(\Delta=\left(5A-15\right)^2-32\left(A^2-6A+8\right)\ge0\)

\(\Leftrightarrow-7A^2+42A-31\ge0\)

\(\Rightarrow\dfrac{21-4\sqrt{14}}{7}\le A\le\dfrac{21+4\sqrt{14}}{7}\)

Bình luận (0)
H24
Xem chi tiết
TS
Xem chi tiết
MH
27 tháng 3 2023 lúc 13:25

+) \(P=\sqrt{7x+9}+\sqrt{7y+9}+\sqrt{7z+9}\)

\(P^2\le3\left(7x+7y+7z+27\right)=102\)
\(P\le\sqrt{102}\)

\(MaxP=102\Leftrightarrow x=y=z=\dfrac{1}{3}\)

+) \(x,y,z\in[0;1]\)\(\Rightarrow\left\{{}\begin{matrix}x\ge x^2\\y\ge y^2\\z\ge z^2\end{matrix}\right.\)

\(P\ge\sqrt{x^2+6x+9}+\sqrt{y^2+6y+9}+\sqrt{z^2+6z+9}\)

\(=x+y+z+9=10\)

\(MinP=10\Leftrightarrow\left(x;y;z\right)=\left(0;0;1\right)\text{và các hoán vị}\)

Bình luận (0)
PD
Xem chi tiết
AM
7 tháng 2 2022 lúc 20:43

Bạn xem lại đề nghen, đoạn thỏa mãn đó có vấn đề phải không nhỉ?

Bình luận (4)
HH
8 tháng 2 2022 lúc 0:51

Bạn nên dùng Geogebra hoặc Desmos vẽ cái đường tròn kia sẽ dễ nhìn hơn, gửi nhầm vô phần cmt của bạn dưới nên mình gửi lại

undefined

 

Bình luận (0)
H24
Xem chi tiết
NL
20 tháng 1 2022 lúc 15:20

Do \(x^2+y^2=1\Rightarrow-1\le x;y\le1\Rightarrow\left\{{}\begin{matrix}y+1\ge0\\1-y\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y^2\left(y+1\right)\ge0\\y^2\left(1-y\right)\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y^3\ge-y^2\\y^3\le y^2\end{matrix}\right.\)

Với mọi số thực x ta có:

\(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(x-1\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x\ge-x^2-1\\2x\le x^2+1\end{matrix}\right.\)

Do đó: \(\left\{{}\begin{matrix}P=2x+y^3\ge-x^2-1-y^2=-2\\P=2x+y^3\le x^2+1+y^2=2\end{matrix}\right.\)

\(P_{min}=-2\) khi \(\left(x;y\right)=\left(-1;0\right)\)

\(P_{max}=2\) khi \(\left(x;y\right)=\left(1;0\right)\)

Bình luận (0)
KM
Xem chi tiết
QT
Xem chi tiết
PN
12 tháng 4 2017 lúc 21:13

ta có:

\(x+2y=3\Leftrightarrow x=3-2y\)

thay vào P, ta có:

\(P=\left(3-2y\right)^2+5y^2\)

\(P=\left(3y-2\right)^2+5\)

\(\Rightarrow P\ge5\)(dấu xảy ra dấu "="\(\Leftrightarrow x=y=\frac{2}{3}\))

Bình luận (0)
TB
Xem chi tiết
DQ
10 tháng 11 2020 lúc 5:00

Bài 1: 

ĐK: \(x,y\ge-2\)

Ta có: \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}=0\)

=> x-y=0=>x=y

Thay y=x vào B ta được:  B=x2+2x+10\(=\left(x+1\right)^2+9\ge9\forall x\ge-2\)

Dấu '=' xảy ra <=> x+1=0=>x=-1 (tmđk)

Vậy Min B =9 khi x=y=-1

Bình luận (0)
 Khách vãng lai đã xóa
PL
9 tháng 8 2020 lúc 12:46

10x100=

Bình luận (0)
 Khách vãng lai đã xóa