Những câu hỏi liên quan
H24
Xem chi tiết
H24
12 tháng 1 2022 lúc 22:30

\(x^2+y^2+z^2=1\Rightarrow x^2,y^2,z^2\le1\Rightarrow-1\le x,y,z\le1\)

Ta có:\(x^3+y^3+z^3-x^2-y^2-z^2=0\)

\(\Rightarrow x^2\left(x-1\right)+y^2\left(y-1\right)+z^2\left(z-1\right)=0\)

Vì \(x-1\le0,y-1\le0,z-1\le0\)

\(\Rightarrow x^2\left(x-1\right)\text{​​}\le0,y^2\left(y-1\right)\le0,z^2\left(z-1\right)\le0\)

\(\Rightarrow x^2\left(x-1\right)\text{​​}+y^2\left(y-1\right)+z^2\left(z-1\right)\le0\)

Dấu "=" xảy ra khi\(\left\{{}\begin{matrix}x^2\left(x-1\right)=0\\y^2\left(y-1\right)=0\\z^2\left(z-1\right)=0\end{matrix}\right.\)

\(\Rightarrow\left(x,y,z\right)\) là bộ (0,0,1) và các hoán vị

\(\Rightarrow x^{2021}+y^{2021}+z^{2021}=1\)

Bình luận (0)
H24
Xem chi tiết
MY
26 tháng 1 2022 lúc 18:55

\(\Rightarrow\left(x-2\right)\left(y-2\right)\left(z-2\right)\le0\)

\(\Leftrightarrow xyz-2\left(xy+yz+xz\right)+4\left(x+y+z\right)-8\le0\)

\(\Leftrightarrow-2\left(xy+yz+xz\right)\le8-4\left(x+y+z\right)-xyz=8-4.3+0=-4\left(xyz\ge0\right)\)

\(A=x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+xz\right)\le3^2-4=5\)

\(max_A=5\Leftrightarrow\left\{{}\begin{matrix}xyz=0\\\left(x-2\right)\left(y-2\right)\left(z-2\right)=0\\x+y+z=3\end{matrix}\right.\)

\(\Leftrightarrow\left(x;y;z\right)=\left\{0;1;2\right\}\) \(và\) \(các\) \(hoán\) \(vị\)

 

Bình luận (0)
NQ
Xem chi tiết
LC
15 tháng 2 2020 lúc 10:15

Áp dụng bđt AM-GM ta có:

\(\frac{x^2}{x+y}+\frac{x+y}{4}\ge2\sqrt{\frac{x^2}{x+y}.\frac{x+y}{4}}=x\)

\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge2\sqrt{\frac{y^2}{x+z}.\frac{x+z}{4}}\ge y\)

\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge2\sqrt{\frac{z^2}{x+y}.\frac{x+y}{4}}\ge z\)

Cộng từng vế các bđt trên ta được:

\(P+\frac{x+y+z}{2}\ge x+y+z\)

\(\Rightarrow P\ge\frac{x+y+z}{2}=1\)

Dấu"="xảy ra \(\Leftrightarrow x=y=z=1\)

Vậy Min P=1 \(\Leftrightarrow x=y=z=1\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
15 tháng 2 2020 lúc 10:26

anh Châu ơi, 1+1+1 đâu có = 2 anh.

Bình luận (0)
 Khách vãng lai đã xóa
LC
15 tháng 2 2020 lúc 10:27

à anh xl nhầm x=y=z=\(\frac{2}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
VT
Xem chi tiết
TC
20 tháng 11 2021 lúc 15:41

Xét \(x+y+z=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+z=-x\\z+x=-y\\x+y=-z\end{matrix}\right.\)

\(\Rightarrow A=\left(2-1\right)\left(2-1\right)\left(2-1\right)=1\)

Xét \(x+y+z\ne0\) thì ta có:

\(\dfrac{x}{y+z+3x}=\dfrac{y}{z+x+3y}=\dfrac{z}{x+y+3z}=\dfrac{x+y+z}{5x+5y+5z}=\dfrac{x+y+z}{5\left(x+y+z\right)}=\dfrac{1}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}5x=y+z+3x\\5y=z+x+3y\\5z=x+y+3z\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=y+z\\2y=z+x\\2z=x+y\end{matrix}\right.\)

\(\Rightarrow A=\left(2+2\right)\left(2+2\right)\left(2+2\right)=64\)

Vậy \(\left[{}\begin{matrix}A=1\\A=64\end{matrix}\right.\)

Bình luận (0)
TC
20 tháng 11 2021 lúc 15:46

Nếu bị lỗi thì bạn có thể xem đây nhé:

undefined

Bình luận (1)
H24
Xem chi tiết
H24
Xem chi tiết
LP
4 tháng 10 2016 lúc 19:57

Nếu \(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}\Rightarrow x=y=z=0\)

Vậy     \(T=\frac{\left(x-z\right)^2}{\left(x-y\right)^2.\left(y-z\right)}=\frac{0^2}{0^2.0}\)   mà phân số được viết dưới dạng \(\frac{a}{b}\) với a thuộc Z và b khác 0

\(\Rightarrow\)T không có giá trị thỏa mãn

Bình luận (0)
KQ
Xem chi tiết
TA
30 tháng 6 2017 lúc 22:33

Phải là giá trị nhỏ nhất nha bạn

Áp dụng BĐT Cô-si dạng Engel

\(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{z+y}\ge\frac{\left(x+y+z\right)^2}{\left(y+z\right)+\left(z+x\right)+\left(x+y\right)}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}\\x+y+z=2\end{cases}}\)  \(\Leftrightarrow\)  \(x=y=z=\frac{2}{3}\)

Bình luận (0)
H24
30 tháng 6 2017 lúc 22:36

áp dụng bất đẳng thức cô si ta có:

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge x\)

\(\frac{y^2}{z+x}+\frac{z+x}{4}\ge y\)

\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)

\(\Rightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}+\frac{x+y+z}{2}\ge x+y+z\)

\(\Rightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}=1\)

Bình luận (0)
NQ
30 tháng 6 2017 lúc 22:37

Xét x^2/y+z +1/4(y+z) >= 2.\(.\sqrt{\frac{x^2.1\left(y+z\right)}{4\left(y+z\right)}}\)=x

Tương tự ...... A >= x+y+z - 1/4(x+y)+1/4(y+z)+1/4(z+x)=1/2(x+y+z)=1

Dấu "=" xảy ra <=> x=y=z=2/3

Vậy Min A= 1 <=> x=y=z=2/3

Bình luận (0)
TD
Xem chi tiết
ZZ
14 tháng 5 2021 lúc 20:08

hiiiii

Bình luận (0)
 Khách vãng lai đã xóa
VD
29 tháng 7 2021 lúc 11:31

rg

Bình luận (0)
 Khách vãng lai đã xóa