H24

Cho x , y , z đồng thời thỏa mãn x + y + z = 1 ; x^2 + y^2 + z^2 = 1 ; x^3 + y^3 + z^3 = 1

Tính x^2021 + y^2021 + z^2021

H24
12 tháng 1 2022 lúc 22:30

\(x^2+y^2+z^2=1\Rightarrow x^2,y^2,z^2\le1\Rightarrow-1\le x,y,z\le1\)

Ta có:\(x^3+y^3+z^3-x^2-y^2-z^2=0\)

\(\Rightarrow x^2\left(x-1\right)+y^2\left(y-1\right)+z^2\left(z-1\right)=0\)

Vì \(x-1\le0,y-1\le0,z-1\le0\)

\(\Rightarrow x^2\left(x-1\right)\text{​​}\le0,y^2\left(y-1\right)\le0,z^2\left(z-1\right)\le0\)

\(\Rightarrow x^2\left(x-1\right)\text{​​}+y^2\left(y-1\right)+z^2\left(z-1\right)\le0\)

Dấu "=" xảy ra khi\(\left\{{}\begin{matrix}x^2\left(x-1\right)=0\\y^2\left(y-1\right)=0\\z^2\left(z-1\right)=0\end{matrix}\right.\)

\(\Rightarrow\left(x,y,z\right)\) là bộ (0,0,1) và các hoán vị

\(\Rightarrow x^{2021}+y^{2021}+z^{2021}=1\)

Bình luận (0)

Các câu hỏi tương tự
KC
Xem chi tiết
TD
Xem chi tiết
BT
Xem chi tiết
TD
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
LL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết