Những câu hỏi liên quan
H24
Xem chi tiết
NL
21 tháng 8 2021 lúc 21:49

Áp dụng  \(x^2+y^2+z^2\ge xy+yz+zx\) và \(x^2+y^2+z^2\ge\dfrac{1}{3}\left(x+y+z\right)^2\)

\(N\ge\dfrac{a^2b}{c}+\dfrac{b^2c}{a}+\dfrac{c^2a}{b}\ge\dfrac{1}{3}\left(a\sqrt{\dfrac{b}{c}}+b\sqrt{\dfrac{c}{a}}+c\sqrt{\dfrac{a}{b}}\right)^2=3\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (1)
NH
Xem chi tiết
PQ
3 tháng 1 2019 lúc 18:11

Áp dụng \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) Dấu "=" xảy ra khi a hoặc b bằng 0 nhưng bài này a, b dương nên dấu "=" ko xảy ra nhé

\(\sqrt[4]{a^3}+\sqrt[4]{b^3}>\sqrt{\sqrt{a^3}+\sqrt{b^3}}>\sqrt[4]{a^3+b^3}=\sqrt[4]{\left(a+b\right)^3+3ab\left(a+b\right)}\)

\(=\sqrt[4]{c^3+3abc}>\sqrt[4]{c^3}\) ( đpcm ) 

Bình luận (0)
VT
Xem chi tiết
TN
Xem chi tiết
DA
Xem chi tiết
TN
Xem chi tiết
NT
Xem chi tiết
SO
Xem chi tiết
NL
10 tháng 3 2023 lúc 21:56

\(\dfrac{a}{\sqrt{b^3+1}}=\dfrac{a}{\sqrt{\left(b+1\right)\left(b^2-b+1\right)}}\ge\dfrac{2a}{b+1+b^2-b+1}=\dfrac{2a}{b^2+2}\)

Tương tự và cộng lại:

\(VT\ge\dfrac{2a}{b^2+2}+\dfrac{2b}{c^2+2}+\dfrac{2c}{a^2+2}=a-\dfrac{ab^2}{b^2+2}+b-\dfrac{bc^2}{c^2+2}+c-\dfrac{ca^2}{a^2+2}\)

\(VT\ge6-\left(\dfrac{ab^2}{b^2+2}+\dfrac{bc^2}{c^2+2}+\dfrac{ca^2}{c^2+2}\right)\)

Ta có:

\(\dfrac{ab^2}{b^2+2}=\dfrac{2ab^2}{2b^2+4}=\dfrac{2ab^2}{b^2+b^2+4}\le\dfrac{2ab^2}{3\sqrt[3]{4b^4}}=\dfrac{a}{3}\sqrt[3]{2b^2}=\dfrac{a}{3}\sqrt[3]{2.b.b}\le\dfrac{a}{9}\left(2+b+b\right)\)

Tương tự và cộng lại:

\(VT\ge6-\left(\dfrac{2a}{9}\left(b+1\right)+\dfrac{2b}{9}\left(c+1\right)+\dfrac{2c}{9}\left(a+1\right)\right)\)

\(=6-\dfrac{2}{9}\left(a+b+c\right)-\dfrac{2}{9}\left(ab+bc+ca\right)\ge6-\dfrac{2}{9}\left(a+b+c\right)-\dfrac{2}{27}\left(a+b+c\right)^2=2\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
PA
Xem chi tiết
CU
31 tháng 12 2015 lúc 17:56

hả?

bài để thi hok kì I đó hả? đúng khó *_*

mk sẽ ghi lại để sau này mk hok

Bình luận (0)
PA
31 tháng 12 2015 lúc 17:58

câu hỏi tương tự ko có đâu

Bình luận (0)