Những câu hỏi liên quan
HH
Xem chi tiết
HH
5 tháng 4 2018 lúc 6:00

Trả lời đi mn

Bình luận (0)
AS
Xem chi tiết
VG
Xem chi tiết
NL
25 tháng 3 2023 lúc 23:45

a.

\(F=\dfrac{a}{b+2}\Rightarrow F.b+2F=a\)

\(\Rightarrow2F=a-F.b\)

\(\Rightarrow4F^2=\left(a-F.b\right)^2\le\left(a^2+b^2\right)\left(1^2+F^2\right)=F^2+1\)

\(\Rightarrow3F^2\le1\)

\(\Rightarrow-\dfrac{1}{\sqrt{3}}\le F\le\dfrac{1}{\sqrt{3}}\)

Dấu "=" lần lượt xảy ra tại \(\left(a;b\right)=\left(-\dfrac{\sqrt{3}}{2};-\dfrac{1}{2}\right)\) và \(\left(\dfrac{\sqrt{3}}{2};-\dfrac{1}{2}\right)\)

b. Đặt \(\left\{{}\begin{matrix}a+b=x\\a-2b=y\end{matrix}\right.\) quay về câu a

Bình luận (0)
QL
Xem chi tiết
HT
Xem chi tiết
AP
Xem chi tiết
ND
Xem chi tiết
DA
Xem chi tiết
DH
8 tháng 8 2017 lúc 13:38

*) Tìm GTNN của \(A=a^2+b^2+c^2\)

Ta có :\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a.1+b.1+c.1\right)^2\)(Bunhiacopxki)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{25}{3}\)

*) Tìm GTLN của \(B=ac+bc+ac\)

Ta có  \(a^2+b^2+c^2\ge ab+ac+bc\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3ab+3ac+3bc\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)

\(\Rightarrow ab+bc+ac\le\frac{\left(a+b+c\right)^2}{3}=\frac{25}{3}\)

Bình luận (0)
HT
Xem chi tiết