Những câu hỏi liên quan
BS
Xem chi tiết
PH
27 tháng 11 2018 lúc 18:18

ĐK: \(x\ne1\)

\(\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{1-2x}{x^2+x+1}-\frac{6}{x-1}\)

\(=\frac{4x^2-3x+5-\left(1-2x\right)\left(x-1\right)-6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{4x^2-3x+5+2x^2-3x+1-6x^2-6x-6}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{-12x}{\left(x-1\right)\left(x^2+x+1\right)}\)

Bình luận (0)
BS
Xem chi tiết
H24
27 tháng 11 2018 lúc 18:10

Toán lớp 8 hở mày ?

Bình luận (0)
TP
27 tháng 11 2018 lúc 18:40

ĐKXĐ : \(x\ne-1\)

\(\frac{1}{2x+2}-\frac{x-1}{3x^2+6x+3}\)

\(=\frac{1}{2\left(x+1\right)}-\frac{x-1}{3\left(x^2+2x+1\right)}\)

\(=\frac{1}{2\left(x+1\right)}-\frac{x-1}{3\left(x+1\right)^2}\)

\(=\frac{3\left(x+1\right)}{2\left(x+1\right)\cdot3\left(x+1\right)}-\frac{2\left(x-1\right)}{3\left(x+1\right)^2\cdot2}\)

\(=\frac{3x+3}{6\left(x+1\right)^2}-\frac{2x-2}{6\left(x+1\right)^2}\)

\(=\frac{3x+3-2x+2}{6\left(x+1\right)^2}\)

\(=\frac{x+5}{6\left(x+1\right)^2}\)

Bình luận (0)
IS
Xem chi tiết
MC
Xem chi tiết
IS
Xem chi tiết
BT
Xem chi tiết
H24
Xem chi tiết
H24
18 tháng 11 2019 lúc 21:02

\(=\frac{16+x}{x^2-2x}-\frac{18}{x^2-2x}\)

\(=\frac{16+x-18}{x\left(x-2\right)}\)

\(=\frac{-2+x}{x\left(x-2\right)}\)

Bình luận (0)
 Khách vãng lai đã xóa
LC
18 tháng 11 2019 lúc 21:02

a) \(\frac{16+x}{x^2-2x}+\frac{18}{2x-x^2}=\frac{16+x-18}{x^2-2x}=\frac{x-2}{x\left(x-2\right)}=\frac{1}{x}\)

b) \(\frac{2y}{2x^2-xy}+\frac{4x}{xy-2x^2}=\frac{2y-4x}{2x^2-xy}=\frac{-2\left(2x-y\right)}{x\left(2x-y\right)}=\frac{-2}{x}\)

c) \(\frac{4-x^2}{x-3}+\frac{2x-2x^2}{3-x}+\frac{5-4x}{x-3}=\frac{4-x^2+2x^2-2x+5-4x}{x-3}=\frac{x^2-6x+9}{x-3}=\frac{\left(x-3\right)^2}{x-3}=x-3\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
18 tháng 11 2019 lúc 21:03

a)

\(\frac{16+x}{x^2-2x}+\frac{18}{2x-x^2}=\frac{16+x}{x^2-2x}-\frac{18}{x^2-2x}\)

\(=\frac{16+x-18}{x\left(x-2\right)}=\frac{x-2}{x\left(x-2\right)}=\frac{1}{x}\)

b)   \(\frac{2y}{2x^2-xy}+\frac{4x}{xy-2x^2}=\frac{2y}{2x^2-xy}-\frac{4x}{2x^2-xy}\)

\(=\frac{2y-4x}{x\left(2x-y\right)}=\frac{2\left(y-2x\right)}{x\left(2x-y\right)}=-\frac{2}{x}\)

c)  \(\frac{4-x^2}{x-3}+\frac{2x-2x^2}{3-x}+\frac{5-4x}{x-3}\)\(=\frac{4-x^2}{x-3}-\frac{2x-2x^2}{x-3}+\frac{5-4x}{x-3}\)

\(=\frac{4-x^2-2x+2x^2+5-4x}{x-3}\)\(=\frac{x^2-6x+9}{x-3}=\frac{\left(x-3\right)^2}{x-3}=x-3\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
AZ
14 tháng 2 2020 lúc 16:36

Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\) 

 \(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)

\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\) 

 \(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)

\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\) 

\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)

Bình luận (0)
 Khách vãng lai đã xóa
AN
Xem chi tiết
XL
8 tháng 2 2020 lúc 16:27

a, \(\frac{x-3}{5}\) = 6 - \(\frac{1-2x}{3}\)

3(x - 3) = 90 - 5(1 - 2x)

⇔ 3x - 9 = 90 - 5 + 10x

⇔ 3x - 10x = 90 - 5 + 9

⇔ -7x = 94

⇔ x = \(\frac{-94}{7}\)

S = { \(\frac{-94}{7}\) }

b, \(\frac{3x-2}{6}\) - 5 = \(\frac{3-2\left(x+7\right)}{4}\)

⇔ 2(3x - 2) - 60 = 9 - 6(x + 7)

⇔ 6x - 4 - 60 = 9 - 6x - 42

⇔ 6x + 6x = 9 - 42 + 60 + 4

⇔ 12x = 31

⇔ x = \(\frac{31}{12}\)

S = { \(\frac{31}{12}\) }

c, \(\frac{x+8}{6}\) - \(\frac{2x-5}{5}\) = \(\frac{x+1}{3}\) - x + 7

⇔ 5(x+ 8) - 6(2x - 5) = 10(x+1) - 30x+210

⇔ 5x+ 40 - 12x+ 30 = 10x+ 10 - 30x+210

⇔ 5x - 12x - 10x+ 30x = 10+ 210 - 30- 40

⇔ 13x = 150

⇔ x = \(\frac{150}{13}\)

S = { \(\frac{150}{13}\) }

d, \(\frac{7x}{8}\) - 5(x - 9) = \(\frac{2x+1,5}{6}\)

⇔ 21x - 120(x - 9) = 4(2x + 1,5)

⇔ 21x - 120x + 1080 = 8x + 6

⇔ 21x - 120x - 8x = 6 - 1080

⇔ -107x = -1074

⇔ x = \(\frac{1074}{107}\)

S = { \(\frac{1074}{107}\) }

e, \(\frac{5\left(x-1\right)+2}{6}\) - \(\frac{7x-1}{4}\) = \(\frac{2\left(2x+1\right)}{7}\) - 5

⇔ 140(x-1)+56 - 42(7x-1) = 48(2x+1)-840

⇔ 140x -140+56 -294x+42= 96x+48 -840

⇔ 140x -294x -96x = 48 -840 -42 -56+140

⇔ -250x = -750

⇔ x = 3

S = { 3 }

f, \(\frac{x+1}{3}\) + \(\frac{3\left(2x+1\right)}{4}\) = \(\frac{2x+3\left(x+1\right)}{6}\) + \(\frac{7+12x}{12}\)

⇔ 4(x+1)+9(2x+1) = 4x+6(x+1)+7+12x

⇔ 4x+4+18x+9 = 4x+6x+6+7+12x

⇔ 4x+18x - 4x - 6x - 12x = 6+7- 9 - 4

⇔ 0x = 0

S = R

Chúc bạn học tốt !

Bình luận (0)
 Khách vãng lai đã xóa