Những câu hỏi liên quan
H24
Xem chi tiết
H24
25 tháng 7 2019 lúc 11:28

tìm y nữa 

mình viết thiếu

Bình luận (0)
H24
Xem chi tiết
LG
25 tháng 7 2019 lúc 14:08

Hỏi đáp Toán

Bình luận (0)
HN
Xem chi tiết
NM
5 tháng 9 2021 lúc 13:52

\(a,9x^2+y^2+2z^2-18x+4z-6y+20=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

\(b,5x^2+5y^2+8xy+2y-2x+2=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(c,5x^2+2y^2+4xy-2x+4y+5=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

\(d,x^2+4y^2+z^2=2x+12y-4z-14\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)

\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Pt vô nghiệm do ko có 2 bình phương số nguyên có tổng là 11

 

 

Bình luận (0)
NT
5 tháng 9 2021 lúc 14:10

e: Ta có: \(x^2-6x+y^2+4y+2=0\)

\(\Leftrightarrow x^2-6x+9+y^2+4y+4-11=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Dấu '=' xảy ra khi x=3 và y=-2

Bình luận (0)
HN
Xem chi tiết
H24
Xem chi tiết
LQ
25 tháng 7 2019 lúc 11:18

(Phần a mình lấy vế phải bằng 0 nha ^^)

a,

\(\left(5x-1\right)^2-\left(5x-4\right)\left(5x+4\right)+7=0\\ \Leftrightarrow25x^2-10x+1-\left(25x^2-16\right)+7=0\\ \Leftrightarrow25x^2-10x+1-25x^2+16+7=0\\ \Leftrightarrow-10x+24=0\\ \Leftrightarrow x=2,4\)

b,

\(5x^2+4xy+4y^2+4x+1=0\left(1\right)\\ \Leftrightarrow4x^2+4x+1+x^2+4xy+4y^2=0\\ \Leftrightarrow\left(2x+1\right)^2+\left(x+2y\right)^2=0\left(1a\right)\)

Do \(VT\ge0\) với \(\forall x,y\in R\) nên:

\(\left(1a\right)\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\x+2y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=\frac{1}{4}\end{matrix}\right.\)

c,

\(\left(x+2\right)^3-x\left(x-1\right)\left(x+1\right)=6x^2+21\\ \Leftrightarrow x^3+6x^2+12x+8-x\left(x^2-1\right)-6x^2-21=0\\ \Leftrightarrow x^3+12x+8-x^3+x-21=0\\ \Leftrightarrow13x-13=0\\ \Leftrightarrow x=1\)

Chúc bạn học tốt nhaok.

Bình luận (0)
NT
25 tháng 7 2019 lúc 11:23

\(b)5x^2 + 4xy + 4y^2 + 4x + 1 = 0\)

\(\Leftrightarrow\) \(4x^2 + 4x + 1 + x^2 + 4xy + 4y^2 = 0\)

\(\Leftrightarrow\)\((2x + 1)^2 + (x + 2y)^2 = 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\x+2y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=\frac{1}{4}\end{matrix}\right.\)

\(c)(x+2)^3-x(x-1)(x+1)=6x^2+21\)

\(\Leftrightarrow x^3+6x^2+12x+8-x\left(x^2-1\right)=6x^2+21\\ \Leftrightarrow13x+8=21\\ \Leftrightarrow13x=21-8\\ \Leftrightarrow13x=13\\ \Leftrightarrow x=1\)

Bình luận (0)
TS
Xem chi tiết
AH
27 tháng 4 2023 lúc 18:49

Lời giải:

Áp dụng BĐT AM-GM:

$x^2+2^2\geq 4x$

$4y^2+1\geq 4y$

$\Rightarrow x^2+4y^2+5\geq 4(x+y)$

$\Rightarrow P=x^2+4y^2+4xy\geq 4(x+y)-5+4xy=4(x+y+xy)-5=4.\frac{7}{2}-5=9$

Vậy $P_{\min}=9$. Giá trị này đạt tại $x=2; y=\frac{1}{2}$

Bình luận (1)
PB
Xem chi tiết
CT
30 tháng 6 2019 lúc 18:05

Đáp án C

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 4 2017 lúc 13:16

Bình luận (0)
H24
Xem chi tiết
NT
18 tháng 10 2021 lúc 21:45

b: \(8x^2-48x+6xy-36y\)

\(=8x\left(x-6\right)+6y\left(x-6\right)\)

\(=2\left(x-6\right)\left(4x+3y\right)\)

d: \(a^2-2ab+b^2-4\)

\(=\left(a-b\right)^2-4\)

\(=\left(a-b-2\right)\left(a-b+2\right)\)

Bình luận (0)