Tìm x thuộc N biết :
a) 3^x - 3^x+3 = -234
b) 2^2x+1 + 4^x+3 =264
c) 2^x+1 . 3^x-6^x=216
d) 9^x-3^x=702
tìm x thuộc N biết
3^x-3^x+3=-234
2^x+1.3^x-6^x=216
2^2x+1 + 4^x+3=264
3^m+n - 3^n = 702
9^x - 3^x= 702
Giúp mình nah!!! câu nào cũng được, khó quá!!!!!
lười làm quá, bạn làm hết cũng siêng ấy
22x+1+4x+3=264
22x+1+22x+1*32=264
22x+1(1+32)=264
22x+1*33=264
22x+1=264/33=8=23
=>2x+1=3
2x=3-1
2x=2
x=2/2
x=1
Tìm x ϵ N biết:
a)\(3^x-3^{x+3}=-234.\) c)\(2^{2x+1}+4^{x+3}=264.\) d)\(9^x-3^x=702.\)
b)\(2^{x+1}.3^x-6^x=216.\)
a)Ta có:
\(3^x-3^{x-3}=-234\)
\(\Rightarrow3^x-3^x\cdot3^3=-234\)
\(\Rightarrow3^x\cdot\left(1-3^3\right)=-234\)
\(\Rightarrow3^x\cdot\left(-26\right)=-234\)
\(\Rightarrow3^x=9\)
\(\Rightarrow x=2\)
Vậy x=2
\(\Rightarrow3^x=3^2\)
b) Ta có:
\(2^{x+1}\cdot3^x-6^x=216\)
\(\Rightarrow2^x\cdot2\cdot3^x-2^x\cdot3^x=216\)
\(\Rightarrow\left(2^x\cdot3^x\right)\cdot\left(2-1\right)=216\)
\(\Rightarrow6^x\cdot1=216\)
\(\Rightarrow6^x=6^3\)
\(\Rightarrow x=3\)
Vậy x=3
c) Ta có:
\(2^{2x+1}+4^{x+3}=264\)
\(\Rightarrow2^{2x+1}+\left(2^2\right)^{x+3}=264\)
\(\Rightarrow2^{2x+1}+2^{2x+6}=2^{264}\)
\(\Rightarrow2^{2x+1}+2^{2x+1+5}=264\)
\(\Rightarrow2^{2x+1}+2^{2x+1}\cdot2^5=264\)
\(\Rightarrow2^{2x+1}\cdot\left(1+2^5\right)=264\)
\(\Rightarrow2^{2x+1}\cdot26=264\)
\(\Rightarrow2^{2x+1}=\frac{132}{13}\)
\(\Rightarrow2^{2x+1}\notin N\)
\(\Rightarrow2x+1\notin N\)
\(\Rightarrow x\notin N\)
\(\Rightarrow\) Không có giá trị x thỏa mãn.
Vậy không có giá trị x thỏa mãn.
Tìm số nguyên x biết:
a,(x-4)(x+3)>hoặc= 0
b,(3x-6).3=3^4
c,5^x+2-5^x-1=3100
d,3^x+1-3^x-2=702
e,(2-x)(x+1)<hoặc= 0
f,(x-1)(x^2+4)< 0
g,3|2x-5|-7=20
Bài 1 Tìm X biết (x+4)²-81=0 Bài 2 cho biểu thức A=(x-3/x - x/x-3 + 9/x²-3x)2x-2/x A) tìm ĐKXĐ và rút gọn A B) tìm X thuộc Z để A thuộc Z Bài 3 A) x³-2x² B) y²-2y-x²+1 C) (x+1)²-25
\(\left(x+4\right)^2-81=0\Leftrightarrow\left(x+4\right)^2-9^2=0\)
\(\Leftrightarrow\left(x+4+9\right)\times\left(x+4-9\right)=0\)
\(\Leftrightarrow\left(x+13\right)\times\left(x-5\right)=0\)
\(\left[{}\begin{matrix}x+13=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-13\\x=5\end{matrix}\right.\)
Tìm x biết:
a.3.|x-2|+2.x=19 với x>2 hoặc x=2
b.6/2/9.x-1/3/8:(3/8+9/20)=4/1/6
c.1/5<x/30<1/4 với x thuộc N
Tìm x biết :
a) x^2 - 3x + 2 (x-3) = 0
b) (x-1)(x+1) + x (x-9) = 2x^2 - 4
c) x (x-3) - 3x + 9 = 0
d) x (x+2) - (x-3)(x+3) = 5
đ) 2x (x+1) - (2x+1)(x-3) = 6
\(x^2-3x+2.\left(x-3\right)=0\)
\(x.\left(x-3\right)+2.\left(x-3\right)=0\)
\(\left(x-3\right).\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
\(x.\left(x-3\right)-3x+9=0\)
\(x.\left(x-3\right)-3.\left(x-3\right)=0\)
\(\left(x-3\right)^2=0=>x=3\)
a,\(x^2-3x+2\left(x-3\right)=0.\)
\(\Leftrightarrow x^2-3x+2x-6=0\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow\left(x^2-2x\right)+\left(3x-6\right)=0\)
\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
a) Ta có: \(x+\dfrac{1}{3}=\dfrac{2}{6}\)
\(\Leftrightarrow x+\dfrac{1}{3}=\dfrac{1}{3}\)
hay x=0
Vậy: x=0
b) Ta có: \(x-\dfrac{1}{4}=\dfrac{1}{-2}\)
\(\Leftrightarrow x-\dfrac{1}{4}=\dfrac{-1}{2}\)
\(\Leftrightarrow x=\dfrac{-1}{2}+\dfrac{1}{4}=\dfrac{-2}{4}+\dfrac{1}{4}=\dfrac{-1}{4}\)
Vậy: \(x=-\dfrac{1}{4}\)
c) Ta có: \(\dfrac{-1}{6}=\dfrac{3}{2}x\)
\(\Leftrightarrow x=\dfrac{-1}{6}:\dfrac{3}{2}=\dfrac{-1}{6}\cdot\dfrac{2}{3}\)
hay \(x=\dfrac{-1}{9}\)
Vậy: \(x=\dfrac{-1}{9}\)
\(a.x=\dfrac{1}{3}-\dfrac{1}{3}\)
\(x=0\)
\(b.x-\dfrac{1}{4}=\dfrac{-1}{2}\)
\(x=\dfrac{-1}{2}+\dfrac{1}{4}\)
\(x=\dfrac{-1}{4}\)
c. \(\dfrac{-1}{6}=\dfrac{3}{2x}\)
\(-2x=18\)
\(x=-9\)
d. \(\dfrac{4}{5}=\dfrac{-12}{9-x}\)
\(4.\left(9-x\right)=-60\)
\(9-x=-15\)
\(x=24\)
\(e.\dfrac{x+1}{3}=\dfrac{3}{x+1}\)
\(\left(x+1\right)^2=9\)
\(\left[{}\begin{matrix}x+1=-3\\x+1=3\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-4\\x=2\end{matrix}\right.\)
f.\(\dfrac{x-1}{-4}=\dfrac{-4}{x-1}\)
\(\left(x-1\right)^2=16\)
\(\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
Tìm x biết:
a,2x(x+1)-3-2x=5
b,2x(3x+1)+(4-2x)=7\
c,(x-3)^3-(x-3)(x^2+3x+9)+6(x-1)^2=6
a)\(2x\left(x+1\right)-3-2x=5\)
\(\Leftrightarrow2x^2+2x-3-2x=5\)
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4=\left(-2\right)^2=2^2\)
\(\Rightarrow x=2;-2\)
b)\(2x\left(3x+1\right)+\left(4-2x\right)=7\)
\(\Leftrightarrow6x^2+2x+4-2x=7\)
\(\Leftrightarrow6x^2+4=7\)
\(\Leftrightarrow6x^2=3\)
\(\Leftrightarrow x^2=\frac{1}{2}=-\sqrt{\frac{1}{2}}=\sqrt{\frac{1}{2}}\)
c)\(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x-1\right)^2=6\)
\(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+6\left(x^2-2x+1\right)=6\)
\(\Leftrightarrow-3x^2+27x+6x^2-12x+6=6\)
\(\Leftrightarrow-3x^2+27x+6x^2-12x+6=6\)
\(\Leftrightarrow3x^2+15x=0\)
\(\Leftrightarrow3x\left(x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x=0\\x+5=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Tìm x biết:
a,2x(x+1)-3-2x=5
b.2x(3x+1)+(4-2x)=7
c,(x-3)^3-(x-3)(x^2+3x+9)+6(x-1)^2=6