A=x^2+2xy+2y^2-4y+3
Tìm giá trị nhỏ nhất
tìm giá trị nhỏ nhất của A = x^2+2y^2+4y+2xy-4x+2019
Do A nhỏ nhất
Suy ra : x^2 = 0, 2y^2 = 0 , 4y = 0 .......( tất cả số hạng bằng 0)
Suy ra A= 2019
\(A=x^2+2y^2+4y+2xy-4x+2019\)
\(A=\left(x^2+y^2-2^2+2xy-4y-4x\right)+\left(y^2+8y+4^2\right)+2007\)
\(A=\left(x+y-2\right)^2+\left(y+4\right)^2+2007\ge2007\)
Vậy \(Min_A=2007\) khi \(\hept{\begin{cases}x+y-2=0\\y+4=0\end{cases}}\hept{\begin{cases}x+y=2\\y=-4\end{cases}}\hept{\begin{cases}x=6\\y=4\end{cases}}\)
Tìm giá trị nhỏ nhất của biểu thức: \(A=x^2+2y^2+2xy+2x-4y+2028\)
\(A=x^2+2x\left(y+1\right)+\left(y+1\right)^2-\left(y+1\right)^2+2y^2-4y+2028\)
\(=\left(x+y+1\right)^2-y^2-2x-1+2y^2-4y+2028\)
\(=\left(x+y+1\right)^2-6x+y^2+2027\)
\(=\left(x+y+1\right)+\left(y-3\right)^2+2018\ge2018\forall x;y\) (do...)
=> MinA = 2018 \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\)
Tính giá trị nhỏ nhất của biểu thức: \(A=x^2+2y^2+2xy+2x-4y+2028\)
\(A=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(y^2-6y+9\right)+2018\)
\(A=\left(x+y+1\right)^2+\left(y-3\right)^2+2018\ge2018\)
\(A_{min}=2018\) khi \(\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\)
giá trị nhỏ nhất của B=x^2-2xy+2y^2-4y
\(B=x^2-2xy+2y^2-4y=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)-4\)
\(=\left(x-y\right)^2+\left(y-2\right)^2-4\ge-4\)
Tìm giá trị nhỏ nhất của x^2 + 2y^2 +2xy+2x-4y+2016
tìm giá trị nhỏ nhất của
A= x2 +y2_2x+4y+1
B= x2+2y2+2xy+2xy-2x-4y
Ta có : \(x^2+y^2-2x+4y+1\)
\(=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)-4\)
\(A=\left(x-1\right)^2+\left(y+2\right)^2-4\)
Vì \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\in R\)
Nên : \(A=\left(x-1\right)^2+\left(y+2\right)^2-4\ge-4\forall x,y\in R\)
Vậy \(A_{min}=-4\) khi x = 1 và y = -2
TÌM GIÁ TRỊ NHỎ NHẤT CỦA A= X2-2XY+2Y2-4Y+5
Ta có: \(A=x^2-2xy+2y^2-4y+5\)
\(\Leftrightarrow A=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+1\)
\(\Leftrightarrow A=\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\)
Dấu "=" xảy ra khi: \(x=y=2\)
Vậy ...
Ta có:
\(A=x^2-2xy+2y^2-4y+5\)
\(A=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+1\)
\(A=\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\)
Dấu " = " xảy ra khi \(x=y=2\)
Rất vui vì giúp đc bạn !!!
\(A=x^2-2xy+2y^2-4y+5\)
\(=x^2-2xy+y^2+y^2-4y+4+1\)
\(=\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\)
Dấu \("="\)xảy ra\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x-y=0\\x-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y\\x=2\end{cases}\Rightarrow}x=y=2}\)
Vậy \(GTNN\)của\(A\)là \(1\Leftrightarrow x=y=2\)
Tìm giá trị nhỏ nhất
x2-2x-2xy-2xy+2y2+2x-4y2x-4y+30
Câu 1
Giải phương trình \(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{2}{x^2+13x+42}\)=\(\frac{1}{18}\)
Câu 2 Tìm giá trị nhỏ nhất A=x2-2xy+2y2-4y+5
Câu 3 Tìm giá trị nhỏ nhất
A=x2-2xy+2y2-4y+5
Tìm giá trị lớn nhất
B=\(\frac{3\left(x+1\right)}{x^3+x^2+x+1}\)
Câu 1: Tự làm :D
Câu 2: \(A=\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\)
Đẳng thức xảy ra khi x = y = 2
Vậy...
Câu 3:
a) Trùng với câu 2
b) ĐK:x khác -1
\(B=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}=\frac{3\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)}\)
\(=\frac{3}{x^2+1}\le\frac{3}{0+1}=3\)
Đẳng thức xảy ra khi x = 0
Làm nốt cái câu 1 và đầy đủ cái câu 2:v
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
Làm nốt nha.Lười quá:((
2
\(A=x^2-2xy+2y^2-4y+5\)
\(A=\left(x-2xy+y^2\right)+\left(y^2-4y+4\right)+1\)
\(A=\left(x-y\right)^2+\left(y-2\right)^2+1\)
\(A\ge1\)
Dấu "=" xảy ra tại \(x=y=2\)