Cho A = 1/2^2 + 1/3^2 + 1/4^2 + ........ + 1/100^2
Chứng tỏ rằng 3/5 < A < 3/4
Bài 1:
a) Chứng tỏ rằng : 200 - (3+2/3+2/4+....+2/100)
--------------------------------------- = 2
1/2+2/3+3/4+....+9/100
b) Cho B =5/2.1 + 4/1.11 + 3/11.2 + 1/2.15 + 15/4.43 + 13/43
Chứng tỏ rằng B > 3
Cho A = 1/2^2+1/3^2+1/4^2+...+1/100^2. Hãy chứng tỏ rằng 1/2<A <4/5
M=1/2^2+1/3^2+1/4^2+...+1/2021^2
chứng minh rằng:1/3<M<1
`M=1/2^2+1/3^2+1/4^2+...+1/2021^2`
Vì `1/2^2>1/(2.3)`
`1/(3^2)>1/(3.4)`
`....................`
`1/2021^2>1/(2021.2022)`
`=>M>1/(2.3)+1/(3.4)+............+1/(2021.2022)`
`=>M>1/2-1/3+1/3-1/4+..........+1/2021-1/2022`
`=>M>1/2-1/2022=505/1011=1/3+56/337>1/3(1)`
Vì `1/2^2<1/(1.2)`
`1/(3^2)<1/(2.3)`
`....................`
`1/2021^2<1/(2021.2020)`
`=>M<1/(1.2)+1/(2.3)+............+1/(2020.2021)`
`=>M<1-1/2+1/2-1/3+..........+1/2020-1/2021`
`=>M<1-1/2021<1(2)`
`(1)(2)=>1/3<M<1`
+Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3};\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4};\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5};...;\dfrac{1}{2021^2}=\dfrac{1}{2021.2021}>\dfrac{1}{2021.2022}\)\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2021^2}>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2021.2022}=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2021}-\dfrac{1}{2022}=\dfrac{1}{2}-\dfrac{1}{2022}=\dfrac{505}{1011}>\dfrac{1}{3}\left(1\right)\)+Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{2021^2}< \dfrac{1}{2020.2021}\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2021^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2020.2021}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2020}-\dfrac{1}{2021}=1-\dfrac{1}{2021}< 1\left(2\right)\)Từ (1) và (2) suy ra: \(\dfrac{1}{3}< M< 1\)
Giải:
\(M=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2021^2}\)
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{2021^2}=\dfrac{1}{2021.2021}< \dfrac{1}{2020.2021}\)
\(\Rightarrow M< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2020.2021}\)
\(\Rightarrow M< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2020}-\dfrac{1}{2021}\)
\(\Rightarrow M< \dfrac{1}{1}-\dfrac{1}{2021}< 1\)
\(\Rightarrow M< 1\left(1\right)\)
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5}\)
...
\(\dfrac{1}{2021^2}=\dfrac{1}{2021.2021}>\dfrac{1}{2021.2022}\)
\(\Rightarrow M>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2021.2022}\)
\(\Rightarrow M>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\)
\(\Rightarrow M>\dfrac{1}{2}-\dfrac{1}{2022}=\dfrac{505}{1011}=\dfrac{1}{3}+\dfrac{56}{337}>\dfrac{1}{3}\left(2\right)\)
Vậy \(\dfrac{1}{3}< M< 1\) (đpcm)
Chúc bạn học tốt!
Cho A=1+1/2+1/3+1/4+...+1/2^100-1.Chứng tỏ rằng 50<A<100
Chứng tỏ rằng : \(5^{27}\) <\(2^{63}\) <\(5^{28}\)
So sánh
a, A=1+2+\(2^2\) +...+\(2^4\) và B=\(2^5\) -1
b, C= 3+\(3^2\) +...+\(3^{100}\) và D= \(\dfrac{3^{101}-3}{2}\)
2:
a: A=1+2+2^2+2^3+2^4
=>2A=2+2^2+2^3+2^4+2^5
=>A=2^5-1
=>A=B
b: C=3+3^2+...+3^100
=>3C=3^2+3^3+...+3^101
=>2C=3^101-3
=>\(C=\dfrac{3^{101}-3}{2}\)
=>C=D
Ta có:
\(\left\{\begin{matrix}5^{27}=\left(5^3\right)^9=125^9\\2^{63}=\left(2^7\right)^9=128^9\end{matrix}\right\}\Rightarrow5^{27}< 2^{63}\left(1\right)\)
\(\left\{\begin{matrix}2^{63}=\left(2^9\right)^7=512^7\\5^{28}=\left(5^4\right)^7=625^7\end{matrix}\right\}\Rightarrow2^{63}< 5^{28}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow5^{27}< 2^{63}< 5^{28}\) (đpcm)
\(a.5^{27}=\left(5^3\right)^9=125^9\\ 2^{63}=\left(2^7\right)^9=128^9\)
Vì 1289 > 1259 => 263 > 527
\(5^{28}=\left(5^4\right)^7=625^7\\ 2^{63}=\left(2^9\right)^7=512^7\)
Vì 6257 > 5127 = > 528 > 263
Đã CMR: \(5^{27}< 2^{63}< 5^{28}\)
\(b.A=1+2+2^2+2^3+2^4\\ 2A=2+2^2+2^3+2^4+2^5\\ 2A-A=\left(2+2^2+2^3+2^4+2^5\right)-\left(1+2+2^2+2^3+2^4+\right)\\ A=2^5-1\\ 2^5-1=2^5-1=>A=B\\ c,C=3+3^2+....+3^{100}\\ 3C=3^2+......+3^{101}\\ 3C-C=\left(3^2+...+3^{101}\right)-\left(3+...+3^{100}\right)\\ 2C=3^{101}-3\\ C=\dfrac{3^{101}-3}{2}\\ \dfrac{3^{101}-3}{2}=\dfrac{3^{101}-3}{2}=>C=D\)
Chứng tỏ rằng số A không phải là số tự nhiên biết rằng;
A=1/2*2+1/3*3+1/4*4+.....+1/100*100
Cho biểu thức M =(1+1/2+1/3+1/4+...+1/100)×2×3×4×5×…×100
Chứng tỏ rằng M chia hết cho 101
Www duoccvvvv làm gì để giảm cân nhanh và an toàn cho người ta có thể học được cách điệu với áo dài đau đớn đau đầu sốt ói mửa và tiêu thụ sản phẩm của mình và người
1. Chứng tỏ rằng tổng 100 số đầu tiên của dãy sau nhỏ hơn 1/4:
1/5; 1/45;1/117;1/221;1/357;...
2.tính A/B biết:
A=1/1.300+1/2.301+1/3.302+...+1/101.400
B=1/1.102+1/2.103+...+1/299.400
3.
Chứng minh rằng; 100-(1+1/2+1/3+...+1/100)=1/2+2/3+...+99/100
4. Tính A/B biết : A=1/2+1/3+...+1/200
B=1/199+2/198+...+199/1
5. Tính: 1-1/2+1/3-1/4+...+1/99-1/100 phần 1/51+1/52+...+1/100
giúp mk nha, ai nhanh mk k cho!