Những câu hỏi liên quan
H24
Xem chi tiết
LN
21 tháng 11 2018 lúc 19:55

về hỏi cô giáo ấy

Bình luận (0)
LH
Xem chi tiết
AJ
Xem chi tiết
NL
20 tháng 4 2020 lúc 18:42

ĐKXĐ: \(x\ge\frac{1}{2}\)

\(\Leftrightarrow x^2-x-1-\frac{13x^2-28x+24}{2x+1}+x+1-2\sqrt{2x-1}=0\)

\(\Leftrightarrow\frac{2x^3-14x^2+25x-25}{2x+1}+\frac{\left(x+1\right)^2-4\left(2x-1\right)}{x+1+2\sqrt{2x-1}}=0\)

\(\Leftrightarrow\frac{\left(x-5\right)\left(2x^2-4x+5\right)}{2x+1}+\frac{\left(x-1\right)\left(x-5\right)}{x+1+2\sqrt{2x-1}}=0\)

\(\Leftrightarrow\left(x-5\right)\left(\frac{2x^2-4x+5}{2x+1}+\frac{x-1}{x+1+2\sqrt{2x-1}}\right)=0\)

\(\Rightarrow x=5\) (ngoặc to luôn dương với \(x\ge\frac{1}{2}\))

Bình luận (0)
MT
Xem chi tiết
NL
20 tháng 7 2021 lúc 16:49

a.

ĐKXĐ: \(x\ge0\)

\(\sqrt{2x^2+13x+5}-5\sqrt{x}+\sqrt{2x^2-3x+5}-3\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2-12x+5}{\sqrt{2x^2+13x+5}+5\sqrt{x}}+\dfrac{2x^2-12x+5}{\sqrt{2x^2-3x+5}+3\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-12x+5\right)\left(\dfrac{1}{\sqrt{2x^2+13x+5}+5\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-3x+5}+3\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-12x+5=0\)

\(\Leftrightarrow...\)

Bình luận (0)
NL
20 tháng 7 2021 lúc 16:49

b.

ĐKXĐ: \(x^2\ge\dfrac{4}{3}\)

\(\sqrt{x^2-\dfrac{4}{3}}+\sqrt{4x^2-4}-x=0\)

\(\Leftrightarrow\sqrt{\dfrac{3x^2-4}{3}}+\dfrac{3x^2-4}{\sqrt{4x^2-4}+x}=0\)

\(\Leftrightarrow\sqrt{3x^2-4}\left(\dfrac{1}{\sqrt{3}}+\dfrac{\sqrt{3x^2-4}}{\sqrt{4x^2-4}+x}\right)=0\)

\(\Leftrightarrow3x^2-4=0\)

\(\Leftrightarrow...\)

Bình luận (0)
DT
Xem chi tiết
NV
Xem chi tiết
LL
17 tháng 5 2017 lúc 23:05

đánh giá đi bạn 

Bình luận (0)
LL
20 tháng 5 2017 lúc 0:03

\(\frac{6}{-x^2+10x-24}=\frac{6}{1-\left(x-5\right)^2}\ge6\)

Bình luận (0)
NN
Xem chi tiết
TN
4 tháng 7 2017 lúc 23:10

b)\(\frac{4}{x}+\sqrt{x-\frac{1}{x}}=x+\sqrt{2x-\frac{5}{x}}\)

\(pt\Leftrightarrow\frac{4}{x}+\sqrt{x-\frac{1}{x}}-\sqrt{\frac{3}{2}}=x+\sqrt{2x-\frac{5}{x}}-\sqrt{\frac{3}{2}}\)

\(\Leftrightarrow\left(\frac{4}{x}-x\right)+\frac{x-\frac{1}{x}-\frac{3}{2}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}=\frac{2x-\frac{5}{x}-\frac{3}{2}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}\)

\(\Leftrightarrow\frac{-\left(x-2\right)\left(x+2\right)}{x}+\frac{\frac{\left(x-2\right)\left(2x+1\right)}{2x}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}-\frac{\frac{\left(x-2\right)\left(4x+5\right)}{2x}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{-\left(x+2\right)}{x}+\frac{\frac{\left(2x+1\right)}{2x}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}-\frac{\frac{\left(4x+5\right)}{2x}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}\right)=0\)

Pt trong ngoặc VN suy ra x=2

Bình luận (0)
TN
4 tháng 7 2017 lúc 23:00

a)\(x^2+3\sqrt{x^2-1}=\sqrt{x^4-x^2+1}\)

\(\Leftrightarrow x^2+3\sqrt{x^2-1}-1=\sqrt{x^4-x^2+1}-1\)

\(\Leftrightarrow\frac{x^2\left(3\sqrt{x^2-1}+1\right)}{3\sqrt{x^2-1}+1}+\frac{9\left(x^2-1\right)-1}{3\sqrt{x^2-1}+1}=\frac{x^4-x^2+1-1}{\sqrt{x^4-x^2+1}+1}\)

\(\Leftrightarrow\frac{9x^2-10+3x^2\sqrt{x^2-1}+x^2}{3\sqrt{x^2-1}+1}=\frac{x^4-x^2}{\sqrt{x^4-x^2+1}+1}\)

\(\Leftrightarrow\frac{\sqrt{x^2-1}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}=\frac{x^2\left(x-1\right)\left(x+1\right)}{\sqrt{x^4-x^2+1}+1}\)

\(\Leftrightarrow\frac{\sqrt{\left(x-1\right)\left(x+1\right)}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}-\frac{x^2\left(x-1\right)\left(x+1\right)}{\sqrt{x^4-x^2+1}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(\frac{\frac{1}{\sqrt{x^2-1}}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}-\frac{x^2}{\sqrt{x^4-x^2+1}+1}\right)=0\)

pt trong căn vô nghiệm

suy ra x=1; x=-1

Bình luận (0)
TN
4 tháng 7 2017 lúc 23:17

c)\(8x^2-13x+7=1+\frac{1}{x}\sqrt[3]{3x^2-2}\)

\(\Leftrightarrow8x^2-13x+7-2=\frac{1}{x}\sqrt[3]{3x^2-2}-1\)

\(\Leftrightarrow\left(x-1\right)\left(8x-5\right)-\frac{\frac{3x^2-2}{x^3}-1}{\frac{1}{x}\sqrt[3]{3x^2-2}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(8x-5\right)-\frac{\frac{-\left(x-1\right)\left(x^2-2x-2\right)}{x^3}}{\frac{1}{x}\sqrt[3]{3x^2-2}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\left(8x-5\right)-\frac{\frac{-\left(x^2-2x-2\right)}{x^3}}{\frac{1}{x}\sqrt[3]{3x^2-2}+1}\right)=0\)

SUy ra x=1 và 1 nghiệm lẻ nx trong ngoặc bn tự làm :V

Bình luận (0)
CD
Xem chi tiết
TN
Xem chi tiết
DQ
8 tháng 10 2020 lúc 21:19

\(\Leftrightarrow\frac{7x+4}{\sqrt{2\left(x-1\right)\left(x+1\right)}}+\frac{2\sqrt{2x+1}}{\sqrt{2\left(x+1\right)}}=3+\frac{3\sqrt{2x+1}}{\sqrt{x-1}}\)

\(\Leftrightarrow7x+4+2\sqrt{\left(2x+1\right)\left(x-1\right)}=3\sqrt{2\left(x-1\right)\left(x+1\right)}+3\sqrt{2\left(2x+1\right)\left(x+1\right)}\)

 \(\Leftrightarrow\left(7x+4+\sqrt{8x^2-4x-4}\right)^2=\left(\sqrt{18x^2-18}+\sqrt{36^2+54x+18}\right)^2\)

\(\Leftrightarrow\left(7x+4\right)^2+8x^2-4x-4+2\left(7x+4\right)\sqrt{8x^2-4x-4}\)\(=18x^2-18+36x^2+54x+18+2\sqrt{\left(18x^2-18\right)\left(36x^2+54x+18\right)}\)

\(\Leftrightarrow3x^2-2x+12+4\left(7x+4\right)\sqrt{\left(x-1\right)\left(2x+1\right)}=36\left(x+1\right)\sqrt{\left(x-1\right)\left(2x+1\right)}\)

\(\Leftrightarrow3x^2-2x+12=4\left(2x+5\right)\sqrt{\left(x-1\right)\left(2x+1\right)}\)

\(\Leftrightarrow\left(3x^2-2x+12\right)^2=16\left(2x+5\right)^2\left(x-1\right)\left(2x+1\right)\)

\(\Leftrightarrow119x^4+588x^3+1940x^2-672x-544=0\left(1\right)\)

Ta thấy x>1 => Vế trái (1) \(>119.1^4+588.1^3+1940.1^2-672.1-544=1431>0\)

=> pt vô nghiệm.

Bình luận (0)
 Khách vãng lai đã xóa