Giải các phương trình nghiệm nguyên: 3x + 19y = 168
Giải phương trình nghiệm nguyên : \(x,y\ge0\)
\(2^{3x+4}+3^{2x+1}=19y\)
Làm cái này thử đi:
Cho \(x,y\ge0\)giải phương trình.
\(9^x-8^x=19y\)
Giải được thì nói tiếp :3
giải phương trình nghiệm nguyên 3x^2+3xy+3y^2=x+8y
giải phương trình nghiệm nguyên 2x^2+3y^2-5xy+3x-2y-3=0
Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số
Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số
Giải phương trình nghiệm nguyên
A)114x -41y= 5
B) giải và biện luận phương trình nghiệm nguyên
3x + ( 2m-1) y= m+1
Giải phương trình nghiệm nguyên \(3x^2+7y^2=210\)
Ta có \(3x^2+7y^2=210\Rightarrow7y^2=210-3x^2\le210\)
=> \(y^2\le30\Rightarrow y\in\left\{0;\pm1;\pm2;\pm3;\pm4;\pm5\right\}\)(vì \(y\in Z\)) (1)
Lại có \(7y^2=210-3x^2=3\left(70-x^2\right)⋮3\)
=> \(y⋮3\left(\text{vì(7;3) = 1}\right)\)(2)
Từ (1) (2) => y = \(\pm3\) => x = \(\pm\)7
Vậy các cặp (x;y) thỏa là (7;3) ; (7;-3) ; (-7; -3) ; (-7 ; 3)
Bài 3 :Cho bất phương trình : 3x(2x + 5) x(6x -1) + 4
a) Giải bất phương trình và biểu diễn tập nghiệm trên trục số.
b) Tìm nghiệm nguyên nhỏnhất của bất phương trình trên.
giải phương trình nghiệm nguyên: xy+3x-2y-7=0
xy+3x-2y-7=0
=>(xy-2y)+3x-7=0
=>y(x-2)+3x-6=-1
=>y(x-2)+3(x-2)=-1
=>(y+3)(x-2)=-1
=>y+3 và x-2 thuộc Ư(1)={1;-1}
Xét y+3=1 =>y=2 <=>x-2=-1 =>x=1
Xét y+3=-1 =>y=-4 <=>x-2=1 =>x=3
Giải phương trình nghiệm nguyên: \(x^6+3x^2+1=y^3\)
Ta có \(x^6< x^6+3x^2+1< x^6+6x^4+12x^2+8=\left(x^2+2\right)^3\).
Theo nguyên lí kẹp ta có \(x^6+3x^2+1=\left(x^2+1\right)^3\Leftrightarrow x^4=0\Leftrightarrow x=0\).
Khi đó y = 1.
Vậy...
Nghiệm chung của ba phương trình đã cho được gọi là nghiệm của hệ gồm ba phương trình ấy. Giải hệ phương trình là tìm nghiệm chung của tất cả các phương trình trong hệ. Hãy giải các hệ phương trình sau: 3 x + 5 y = 34 4 x - 5 y = - 13 5 x - 2 y = 5
Thay x = 3, y = 5 vào vế trái của phương trình (3) ta được:
VT = 5.3 – 2.5 = 15 – 10 = 5 = VP
Vậy (x; y) = (3; 5) là nghiệm của phương trình (3).
Hệ phương trình đã cho có nghiệm (x; ) = (3; 5)
giải phương trình nghiệm nguyên : \(x^2 + 2y^2 + 3xy + 3x + 3y = 15\)
\(\Leftrightarrow\left(x+y\right)\left(x+2y\right)+3\left(x+y\right)=15\)
\(\Leftrightarrow\left(x+y\right)\left(x+2y+3\right)=15\)
15 có hơi nhiều cặp ước nên bạn tự lập bảng và giải nốt nhé :)