Ta có: \(3x+19y=168\)
\(\Rightarrow3x=168-19y\Rightarrow x=56-\dfrac{19y}{3}\)
Để \(x\in Z\Leftrightarrow19y⋮3\Leftrightarrow y⋮3\)
\(\Rightarrow y=3t\left(t\in Z\right)\)
Khi đó \(x=56-19t\)
Vậy \(\left(x;y\right)\in\left\{56-19t;3t\right\}\left(t\in Z\right)\)
3x + 19y = 168
<=> \(\left\{{}\begin{matrix}x=\dfrac{168-19x}{3}\\y=\dfrac{168-3x}{19}\end{matrix}\right.\)