Những câu hỏi liên quan
NX
Xem chi tiết
NT
10 tháng 9 2023 lúc 23:18

a) \(x^2+xy+y^2+1\)

\(=x^2+xy+\dfrac{y^2}{4}-\dfrac{y^2}{4}+y^2+1\)

\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)

mà \(\left\{{}\begin{matrix}\left(x+\dfrac{y}{2}\right)^2\ge0,\forall x;y\\\dfrac{3y^2}{4}\ge0,\forall x;y\end{matrix}\right.\)

\(\Rightarrow\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0,\forall x;y\)

\(\Rightarrow dpcm\)

Bình luận (0)
NT
10 tháng 9 2023 lúc 23:23

b) \(...=x^2-2x+1+4\left(y^2+2y+1\right)+z^2-6z+9+1\)

\(=\left(x-1\right)^2+4\left(y^{ }+1\right)^2+\left(z-3\right)^2+1>0,\forall x.y\)

\(\Rightarrow dpcm\)

Bình luận (0)
AH
10 tháng 9 2023 lúc 23:24

b.

$x^2+4y^2+z^2-2x-6z+8y+15=(x^2-2x+1)+(4y^2+8y+4)+(z^2-6z+9)+1$

$=(x-1)^2+(2y+2)^2+(z-3)^2+1\geq 0+0+0+1>0$ với mọi $x,y,z$

Ta có đpcm.

Bình luận (0)
H24
Xem chi tiết
LT
1 tháng 4 2022 lúc 9:27

⇒(x−1)^2+4(y+1)^2+(z−3)^2≥0

x^2+4y^2+z^2-2x-6z+8y+15

=x^2+4y^2+z^2-2x-6z+8y+1+1+4+9

=(x^2-2x+1)+(4y^2+8y+4)+(z^2-6z+9)+1

=(x-1)^2+4(y+1)^2+(z-3^)2+1

Ta thấy:(x−1)^2≥0

              4(y+1)^2≥0

             (z−3)^ 2≥0

{(x−1)^24(y+1)^2(z−3)^2≥0

⇒(x−1)^2+4(y+1)^2+(z−3)^2≥0

⇒(x−1)2+4(y+1)2+(z−3)2+1≥0+1=1>0

Bình luận (1)
TT
1 tháng 4 2022 lúc 9:29

\(x^2+xy+y^2+1.=x^2+2.x.\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2+\dfrac{3}{4}y^2+1.\\ =\left(x+\dfrac{y}{2}\right)^2+\dfrac{3}{4}y^2+1>0\forall x;y\in R.\\ \Rightarrow x^2+xy+y^2+10\forall x;y\in R.\)

Bình luận (0)
LT
1 tháng 4 2022 lúc 9:30

Kkk

Bình luận (9)
TT
Xem chi tiết
NT
Xem chi tiết
H24
19 tháng 10 2023 lúc 15:49

\(x^2+4y^2+z^2-2x-6z+8y+14=0\\\Leftrightarrow (x^2-2x+1)+(4y^2+8y+4)+(z^2-6z+9)=0\\\Leftrightarrow (x^2-2\cdot x\cdot1+1^2)+[(2y)^2+2\cdot2y\cdot 2+2^2]+(z^2-2\cdot z\cdot3+3^2)=0\\\Leftrightarrow (x-1)^2+(2y+2)^2+(z-3)^2=0\)

Ta thấy: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\forall x\\\left(2y+2\right)^2\ge0\forall y\\\left(z-3\right)^2\ge0\forall z\end{matrix}\right.\)

\(\Rightarrow\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2\ge0\forall x;y;z\)

Mặt khác: \(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2=0\)

nên ta được: 

\(\left\{{}\begin{matrix}x-1=0\\2y+2=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\\z=3\end{matrix}\right.\)

Vậy: ...

Bình luận (0)
KL
19 tháng 10 2023 lúc 16:19

\(x^2+4y^2+z^2-2x-6z+8y+14=0\)

\(\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)=0\)

\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2=0\) (1)

Do \(\left(x-1\right)^2\ge0;\left(2y+2\right)^2\ge0;\left(z-3\right)^2\ge0\)

\(\left(1\right)\Rightarrow\) \(\left(x-1\right)^2=0;\left(2y+2\right)^2=0;\left(z-3\right)^2=0\)

*) \(\left(x-1\right)^2=0\)

\(x-1=0\)

\(x=1\)

*) \(\left(2y+2\right)^2=0\)

\(2y+2=0\)

\(2y=-2\)

\(y=-1\)

*) \(\left(z-3\right)^2=0\)

\(z-3=0\)

\(z=3\)

Vậy x = 1; y = -1; z = 3

Bình luận (0)
KK
19 tháng 10 2023 lúc 16:20

Latex của mình có chút lỗi nên xin phép đánh máy hoàn toàn nhé
x^2+4y^2+z^2-2x-6z+8y+14=0
<=> (x^2-2x+1) +4(y^2+2y+1) +(z^2-6z+9)=0
<=> (x-1)^2+4(y+1)^2+(z-3)^2=0
Do (x-1)^2, (y+1)^2>=0, (z-3)^2>=0
Nên x-1=0, y+1=0, z-3=0
<=> x=1, y=-1, z=3

Bình luận (0)
H24
Xem chi tiết
NT
12 tháng 10 2021 lúc 21:55

Câu 29:

a: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow-a^2+2ab-b^2\le0\)

\(\Leftrightarrow-\left(a-b\right)^2\le0\)(luôn đúng)

Bình luận (0)
NH
3 tháng 12 2021 lúc 14:24

Hả lơp 1 ????????

Bình luận (0)
DT
27 tháng 6 2022 lúc 11:05

undefined

Bình luận (0)
H24
Xem chi tiết
NM
12 tháng 10 2021 lúc 21:11

\(14,P=x^2+xy+y^2-3x-3y+3\\ P=\left(x^2+xy+\dfrac{1}{4}y^2\right)-3\left(x+\dfrac{1}{2}y\right)+\dfrac{3}{4}y^2-\dfrac{3}{2}y+3\\ P=\left(x+\dfrac{1}{2}y\right)^2-3\left(x+\dfrac{1}{2}y\right)+\dfrac{9}{4}+\dfrac{3}{4}\left(y^2-2y+1\right)\\ P=\left(x+\dfrac{1}{2}y-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\left(y-1\right)^2\ge0\)

Bình luận (0)
JS
12 tháng 10 2021 lúc 21:36

đây là lớp 4 ư

Bình luận (1)
HN
Xem chi tiết
H24
13 tháng 7 2019 lúc 16:38

x2 + 4y2 + z2 - 2x - 6z + 8y + 15 

= (x2 - 2x + 1) + (4y2 + 8y + 4) + (z2 - 6z + 9) + 1

= (x - 1)2 + 4(y + 1)2 + (z - 3)2 + 1

Thấy: (x - 1)2 > 0

          4(y + 1)2 > 0 

          (z - 3)2 > 0 

<=> (x - 1)2 + 4(y + 1)2 + (z - 3)2 > 0 

<=> (x - 1)2 + 4(y + 1)2 + (z - 3)2 > 0 + 1 = 1 > 0

=> đpcm

Bình luận (0)
TQ
Xem chi tiết
NH
18 tháng 8 2023 lúc 19:59

\(x\) mũ bao nhiêu thì cô và các bạn mới giúp được chứ em?

Bình luận (0)
TQ
18 tháng 8 2023 lúc 20:05

7) Chứng minh rằng: x^2 +4y^2 + z^2- 2x -6z +8y + 15 > 0 với mọi x, y, z.

Bình luận (0)
NH
18 tháng 8 2023 lúc 20:31

Để được trợ giúp nhanh chóng thì lần sau nhớ ghi đề bài cẩn thận em nhé.

A = \(x^2\) + 4y2 + z2 - 2\(x\) - 6z + 8y + 15

A = (\(x^2\) - 2\(x\) + 1) + (4y2 + 8y + 4) + (z2 - 6z + 9) + 1

A = (\(x\) -1)2 + (2y+2)2 + (z-3)2 + 1

Vì (\(x-1\))2 ≥ 0 ∀ \(x\) ;  (2y +2)2 ≥ 0 ∀ y; (z-3)2 ≥ 0 ∀ z

⇒ A = (\(x\) - 1)2 + (2y+2)2 + (z-3)2 + 1 ≥ 1 > 0 ∀ \(x\); y;z (đpcm)

 

Bình luận (0)
TS
Xem chi tiết
NL
23 tháng 8 2020 lúc 9:00

Bài làm:

a) Ta có: \(-4x^2-4x-2=-\left(4x^2+4x+1\right)-1\)

\(=-\left(2x+1\right)^2-1\le-1< 0\left(\forall x\right)\)

=> đpcm

b) \(x^2+4y^2+z^2-2x-6z+8y+15\)

\(=\left(x^2-2x+1\right)+\left(4y^2-8y+4\right)+\left(z^2-6z+9\right)+1\)

\(=\left(x-1\right)^2+4\left(y-1\right)^2+\left(z-3\right)^2+1\ge1>0\left(\forall x\right)\)

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa
TA
23 tháng 8 2020 lúc 9:00

a) Ta có: \(-4x^2-4x-2=-\left(4x^2+4x+1\right)-1\)

                                           \(=-\left(2x+1\right)^2-1\)

    Vì \(-\left(2x+1\right)^2\le0\forall x\)\(\Rightarrow\)\(-\left(2x+1\right)^2-1\le-1\forall x\)

              \(\Rightarrow\)\(-\left(2x+1\right)^2-1< 0\forall x\)

              \(\Rightarrow\)\(-4x^2-4x-2< 0\forall x\)( ĐPCM )

b) Ta có: \(x^2+4y^2+z^2-2x-6z+8y+15\)

        \(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)

        \(=\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1\)

    Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(2y+2\right)^2\ge0\forall y\\\left(z-3\right)^2\ge0\forall z\end{cases}}\)\(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2\ge0\forall x,y,z\)

          \(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1\ge1\forall x,y,z\)

          \(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1>0\forall x,y,z\)( ĐPCM )

Bình luận (0)
 Khách vãng lai đã xóa
XO
23 tháng 8 2020 lúc 9:04

a) Ta có : -4x2 - 4x - 2 = -(4x2 + 4x + 1) - 1 = -(2x + 1)2 - 1 < 0 (đpcm)

b) x2 + 4y2 + z2 - 2x - 6z + 8y + 15

= (x2 - 2x + 1) + (z2 - 6z + 9) + (4y2 + 8y + 4) + 1

= (x - 1)2 + (z - 3)2 + 4(y + 1)2 + 1 > 0 (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa