C/minh các phân số sau tối giản với mọi số tự nhiên n:
\(\dfrac{12n-1}{20n+1}\)
Chứng minh phân số sau tối giản với mọi số tự nhiên n: \(\dfrac{12n+1}{30n+2}\)
Đặt \(d\) là \(\text{Ư}CLN\) \(\left(12n+1;30n+2\right)\)
Theo bài ra: \(12n+1⋮d\Rightarrow5.\left(12n+1\right)⋮d\left(1\right)\)
\(30n+2⋮d\Rightarrow2\left(30n+2\right)⋮d\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\) \(5.\left(12n+1\right)-2.\left(30n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Mà phân số tối giản thì có \(\text{Ư}CLN\) của tử số và mẫu số là 1
Vậy \(\dfrac{12n+1}{30n+2}\) là phân số tối giản
C/minh các phân số sau tối giản với mọi số tự nhiên n:
\(\dfrac{12n-1}{20n+1}\)
Lời giải:
Gọi $d$ là ước chung lớn nhất của \(12n-1\) và \(20n+1\)
\(\Rightarrow \left\{\begin{matrix} 12n-1\vdots d(*)\\ 20n+1\vdots d\end{matrix}\right.\Rightarrow 12n-1+20n+1\vdots d\)
\(\Rightarrow 32n\vdots d\)
Vì \(12n-1, 20n+1\) lẻ nên hiển nhiên $d$ lẻ \(\Rightarrow (32,d)=(2^5,d)=1\)
Do đó từ \(32n\vdots d\Rightarrow n\vdots d(**)\)
Từ \((*);(**)\Rightarrow 1\vdots d\Rightarrow d=1\)
Vậy $12n-1, 20n+1$ nguyên tố cùng nhau. Do đó phân số đã cho tối giản với mọi số tự nhiên $n$
Chứng minh rằng các phân số sau tối giản với mọi số tự nhiên n
a) n + 1 2 n + 1
b) 2 n + 3 4 n + 8
Chứng minh rằng với mọi số tự nhiên \(n\) thì phân số \(\dfrac{10n^2+9n+4}{20n^2+20n+9}\) tối giản
Để \(\dfrac{10n^2+9n+4}{20n^2+20+9}\) tối giản
\(\Rightarrow10n^2+9n+4⋮1;20n^2+20n+9⋮1\left(n\in N\right)\)
\(\Rightarrow2\left(10n^2+9n+4\right)-\left(20n^2+20n+9\right)⋮1\)
\(\Rightarrow20n^2+18n+8-20n^2-20n+9⋮1\)
\(\Rightarrow-2n-1⋮1\) (luôn đúng \(\forall n\in N\))
\(\Rightarrow dpcm\)
Chứng minh rằng với mọi số tự nhiên thì phân số tối giản
Chứng minh các phân số sau là phân số tối giản với mọi số nguyên n: A= \(\dfrac{12n+1}{30n+2}\)
Gọi \(d\inƯC\left(12n+1;30n+2\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)
\(\Leftrightarrow60n+5-60n-4⋮d\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\inƯ\left(1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(12n+1;30n+2\right)=1\)
hay phân số \(A=\dfrac{12n+1}{30n+2}\) là phân số tối giản(đpcm)
Gọi d∈ƯC(12n+1;30n+2)d∈ƯC(12n+1;30n+2)
⇔⎧⎨⎩12n+1⋮d30n+2⋮d⇔⎧⎨⎩60n+5⋮d60n+4⋮d⇔{12n+1⋮d30n+2⋮d⇔{60n+5⋮d60n+4⋮d
⇔60n+5−60n−4⋮d⇔60n+5−60n−4⋮d
⇔1⋮d⇔1⋮d
⇔d∈Ư(1)⇔d∈Ư(1)
⇔d∈{1;−1}⇔d∈{1;−1}
⇔ƯCLN(12n+1;30n+2)=1⇔ƯCLN(12n+1;30n+2)=1
vậy
chứng minh phân số 21n+2/12n+1 là phân số tối giản với mọi số tự nhiên n
Chứng minh rằng với mọi số tự nhiên n, phân số 12n+1/2n(n+2) là phân số tối giản
Vì 12n+1 = 12n +24 - 23 = 12 (n+2) - 23
=> 12n+1 / 2 (n+2) = 12 (n+2) - 23 / 2n (n+2) = 12 (n+2) / 2n (n+2) - 23 / 2n (n+2) = 6 / n - 23 / 2n (n+2)
Ta có: 2n (n+2) chia hết cho 2
=> 2n (n+2) là số chẵn
Mà 23 là số lẻ nên phân số 23 / 2n (n+2) là phân số tối giản
=> 6 / n - 23 / 2n (n+2) là phân số tối giản
Vậy 12n+1 / 2 (n+2) là phân số tối giản
Chứng minh rằng với mọi số tự nhiên n, phân số 12n+1/2n(n+2) là phân số tối giản.
Mọi người ai trả lời giúp mình với ! @_@
Sau một hồi tìm hiểu thì mình đã có lời giải r, bạn nào chưa bt thì tham khảo nhé !
Vì 12n+1 = 12n +24 - 23 = 12 (n+2) - 23
=> 12n+1 / 2 (n+2) = 12 (n+2) - 23 / 2n (n+2) = 12 (n+2) / 2n (n+2) - 23 / 2n (n+2) = 6 / n - 23 / 2n (n+2)
Ta có: 2n (n+2) chia hết cho 2
=> 2n (n+2) là số chẵn
Mà 23 là số lẻ nên phân số 23 / 2n (n+2) là phân số tối giản
=> 6 / n - 23 / 2n (n+2) là phân số tối giản
Vậy 12n+1 / 2 (n+2) là phân số tối giản
Quách Dương Hà Anh mình ch bt là bạn giải đúng hay sai nhưng nếu giải thích là số lẻ/ số chẵn là phân số tối giản thì sai nhé.
VD: 3/12 = 1/4.
Phải giải thích là 23 là số nguyên tố => 23 chỉ chia hết cho chính nó và 1.
Mà 23 và 1 là số lẻ, còn 2n(n+2) là số chẵn nên 23 không chia hết cho 2n(n+2) =>....
Với mọi số tự nhiên n,hãy chứng minh các phân số sau đây là phân số tối giản
c.7n+4/9n+5
a.2n+1/4n+3.
b.4n+1/12n+7
Nhớ trả lời nhanh nha