tìm tỉ số \(\frac{a}{d}\)biết rằng:\(\frac{a-b}{d-c}\)=\(\frac{3}{8}\)và 8b=3c
b) Tìm tỉ số a/d biết rằng: (a- b)/(c-d)= 3/8 và 8b = 3c.
Tìm các số a, b, c, d, biết rằng : \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và a + 2b - 3c = -20
Ban vao day nha Tìm các số a,b,c biết rằng : a/2=b/3=c/4 và a+2b-3c=-20
Tìm a, b, c biết:
a) 5a - 3b - 3c = 536 và \(\frac{a}{4}=\frac{b}{6};\frac{b}{5}=\frac{c}{8}\)
b) 3a - 5b + 7c = 86 và \(\frac{a+3}{5}=\frac{b-2}{3}=\frac{c-1}{7}\)
c) 5a = 8b = 3c và a - 2b + c = 34
d) 3a = 7b và a\(^2\) - b\(^2\) = 160
đ) 15a = 10b = 6c và abc = 1920
1. Tìm các số a,b,c,d biết rằng:
a:b:c:d=2:3:4:5và a+b+c+d = -42
2. Tìm các số a,b,c,biết rằng :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và a+ 2b-3c =-20
3. Tìm các số a,b,c biết rằng :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và \(a^2-b^2+2c^2=108\)
giúp mình các bn nhé
1.
a:b:c:d = 2:3:4:5 => \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
=> a = -3.2 = -6
b = -3.3 = -9
c = -3.4 = -12
d = -3.5 = -15
2.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Leftrightarrow\frac{a}{2}=\frac{2b}{6}=\frac{3c}{18}=\frac{a+2b-3c}{2+6-18}=-\frac{20}{-10}=2\)
=> a = 4
b = 6
c = 8
3.
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Leftrightarrow\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
=> a2 = 4.4 = 16 => a = +-4
b2 = 4.9 = 36 => b = +-6
2c2 = 4.32 = 128 => c2 = 64 => c = +-8
1/ Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng:
a/ \(\frac{a+b}{b}=\frac{c+d}{d}\)
b/ \(\frac{a-b}{b}=\frac{c-d}{d}\)
2/ Cho ba tỉ số bằng nhau: \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\).Tìm giá trị của mỗi tỉ số đó?
3/ Cho tỉ lệ thức: \(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\) . Chứng minh rằng: \(\frac{a}{b}=\frac{c}{d}\)
4/ Cho 4 số: \(a_1;a_2;a_3;a_4\)thỏa mãn: \(a_2^2=a_1.a_3\)và \(a_3^2=a_2.a_4\). Chứng minh rằng: \(\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\)
\(1,\)
\(a,\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
\(\dfrac{a}{c}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\left(đpcm\right)\)
\(b,\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)
\(\dfrac{a}{c}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
\(2,\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c+c+a+a+b}=\dfrac{a+b+c}{2a+2b+2c}=\dfrac{a+b+c}{2.\left(a+b+c\right)}=\dfrac{1}{2}\)
\(3,\)
\(\dfrac{2a+13b}{3a-7b}=\dfrac{2c+13d}{3c-7d}\)
\(\Rightarrow\text{}\dfrac{2a+13b}{2c+13d}=\dfrac{3a-7b}{3c-7d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\text{}\dfrac{2a+13b}{2c+13d}=\dfrac{3a-7b}{3c-7d}=\dfrac{2a+13b+3a-7b}{2c+13d+3c-7d}=\dfrac{5a+6b}{5c+6d}\)
\(\Rightarrow\dfrac{5a}{5c}=\dfrac{6b}{6d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
\(4,\) https://hoc24.vn/hoi-dap/question/157445.html
Tìm các số a , b , c nếu :
a ) 5a - 3b -3c = - 536 và \(\frac{a}{4}=\frac{b}{6};\frac{b}{5}=\frac{c}{8}\)
b ) 3a - 5b + 7c = 86 và \(\frac{a+3}{5}=\frac{b-2}{3}=\frac{c-1}{7}\)
c ) a - 2b + c = 46 và \(\frac{a}{7}=\frac{b}{6};\frac{b}{5}=\frac{c}{8}\)
d ) 5a = 8b = 3c và a - 2b + c = 34
e ) 3a = 7b và a2 - b2 = 160
g ) a2 + 3b2 - 2c2 = - 16 và \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
i ) a3 + b3 + c3 = 792 và \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
i) Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\Rightarrow\begin{cases}a=2k\\b=3k\\c=4k\end{cases}\)
Vì a3 + b3 + c3 = 792 => 8k3 + 27k3 + 64k3 = 792 => 99k3 = 792 => k3 = 8 => k = 2
=> \(\begin{cases}a=4\\b=6\\c=8\end{cases}\)
Bài g tương tự bài i
e) Từ 3a = 7b => \(\frac{a}{7}=\frac{b}{3}\)
Đặt \(k=\frac{a}{7}=\frac{b}{3}\Rightarrow\begin{cases}a=7k\\b=3k\end{cases}\)
Vì a2 - b2 = 160 => 49k2 - 9k2 = 160 => 40k2 = 160 => k = 2 hoặc -2
Với k = 2 => \(\begin{cases}a=14\\b=6\end{cases}\)
Với k = -2 => \(\begin{cases}a=-14\\b=-6\end{cases}\)
Bài d tương tự bài e
c) Từ \(\frac{a}{7}=\frac{b}{6}\Rightarrow\frac{a}{35}=\frac{b}{30}\)
\(\frac{b}{5}=\frac{c}{8}\Rightarrow\frac{b}{30}=\frac{c}{48}\)
=> \(\frac{a}{35}=\frac{b}{30}=\frac{c}{48}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{a}{35}=\frac{b}{30}=\frac{c}{48}=\frac{a-2b+c}{35-60+48}=\frac{46}{23}=2\)
=> \(\begin{cases}a=70\\b=60\\c=96\end{cases}\)
Bài 1: Cho tỉ lệ thức
Tính tỉ số
Bài 2: a, Tìm x,y,z biết:
b, Cho
Chứng minh rằng:
Bài 3: a, Cho
Chứng minh rằng:
b, Chứng minh rằng nếu thì
Bài 1
Ta có : \(\frac{3x-y}{x+y}=\frac{3}{4}\)
\(\Rightarrow\left(3x-y\right)4=\left(x+y\right)3\)
\(\Leftrightarrow12x-4y=3x+3y\)
\(\Rightarrow12x-3x=3y+4y\)
\(\Leftrightarrow9x=7y\)
\(\Rightarrow\frac{x}{y}=\frac{7}{9}\)
Bài 2 :
Ta có : 3x + 2y = y
=> 3x + y = 0
Lại có ; \(\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-3}{5}=\frac{3x-3}{6}=\frac{3x-3+y+3}{6+1}=\frac{3x+y}{6}=\frac{0}{6}=0\)
Nên \(\frac{x-1}{3}=0\Rightarrow x-1=0\Rightarrow x=1\)
\(y-3=0\Rightarrow y=3\)
\(\frac{z-3}{5}=0\Rightarrow z-3=0\Rightarrow z=3\)
Vậy x = 1 , y = 3 , z = 3
1:cho \(\frac{a}{b}=\frac{c}{d}\)\(a,b,c,d\ne0,a\ne+_-b,a\ne+_-d\)
chứng minh rằng \(\frac{a+b}{b}=\frac{c+d}{d}\);\(\frac{a}{a-b}=\frac{c}{c-d}\)
2,biết rằng các cạnh tam giác tỉ lệ với các số 3,4,5 và chu vi tam giác là 36 cm.tính độ dài cac scanhj của tam giác đó
3,tìm a,b,c,d biết rằng a:b:c:d=3:4:5;6 và a+b+C+d=3,6
4,tìm x,y,z biết \(\frac{x}{3}=\frac{y}{2};\frac{x}{5}=\frac{z}{7}\)và x+y+z=184
1)\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow ac-ad=ac-bc\Leftrightarrow a\left(c-d\right)=c\left(a-b\right)\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
2) Gọi độ dài các cạnh của tam giác đó là a,b,c thì a : b : c = 3 : 4 : 5 ; a + b + c = 36
\(\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{36}{12}=3\Rightarrow\hept{\begin{cases}a=3.3=9\\b=3.4=12\\c=3.5=15\end{cases}}\).Vậy tam giác đó có 3 cạnh là 9 cm ; 12 cm ; 15 cm
3)\(\hept{\begin{cases}a:b:c:d=3:4:5:6\\a+b+c+d=3,6\end{cases}\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{d}{6}=\frac{a+b+c+d}{3+4+5+6}=\frac{3,6}{18}=0,2}\)
=> a = 0,2.3 = 0,6 ; b = 0,2.4 = 0,8 ; c = 0,2.5 = 1 ; d = 0,2.6 = 1,2
4)\(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{3}:5=\frac{y}{2}:5\Leftrightarrow\frac{x}{15}=\frac{y}{10}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}:2=\frac{z}{7}:2\Leftrightarrow\frac{y}{10}=\frac{z}{14}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{14}=\frac{x+y+z}{15+10+14}=\frac{184}{39}=4\frac{28}{39}\Rightarrow\hept{\begin{cases}x=4\frac{28}{39}.15=70\frac{10}{13}\\y=4\frac{28}{39}.10=47\frac{7}{39}\\z=4\frac{28}{39}.14=66\frac{2}{39}\end{cases}}\)
câu 3,4 bạn làm tỉ lệ thức là xong
Cho các số thục a,b,c,d thõa mãn \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Chứng minh rằng \(\left(\frac{12a+3b+21c}{2b+3c+21d}\right)^3=\frac{a}{d}\)(với giả thiết các tỉ số trên đều có nghĩa)