Cho x,y dương. Chứng minh \(x+y\ge\frac{12xy}{9+xy}\)
Cho x,y dương. CMR: \(x+y\ge\frac{12xy}{9+xy}\)
\(x+y\ge2\sqrt{xy}\) (1)
\(9+xy\ge2\sqrt{9xy}\) (2)
Từ (2) suy ra \(\frac{12xy}{9+xy}\le\frac{12}{2\sqrt{9xy}}=\frac{6}{\sqrt{9xy}}=\frac{6}{3\sqrt{xy}}=\frac{2}{\sqrt{xy}}\)
Ta sẽ chứng minh \(2\sqrt{xy}\ge\frac{2}{\sqrt{xy}}\).Thật vậy,ta có:
Điều cần chứng minh tương đương với: \(2\sqrt{xy}.\sqrt{xy}\ge2\)
hay \(2xy\ge2\) (luôn đúng vì x,y dương)
Suy ra đpcm
P/s: Tuy nhiên ở bài này dấu "=" xảy ra. =,=
À nhầm xíu, bắt đầu lại chỗ: "Ta sẽ chứng minh ..."
Ta sẽ chứng minh \(\frac{2\sqrt{xy}}{1}\ge\frac{2}{\sqrt{xy}}\)( \(2\sqrt{xy}=\frac{2\sqrt{xy}}{1}\).Thật vậy,ta có:
Điều cần chứng minh tương đương với: \(\frac{2\sqrt{xy}.\sqrt{xy}}{\sqrt{xy}}\ge\frac{2}{\sqrt{xy}}\)
Hay \(\frac{2xy}{\sqrt{xy}}\ge\frac{2}{\sqrt{xy}}\) - luôn đúng (do x,y dương)
P/s: tuy nhiên dấu "=" không xảy ra ở bài này =((
Ta có:
\(x+y\ge2\sqrt{xy}\)
Ta cần chứng minh:
\(2\sqrt{xy}\ge\frac{12xy}{9+xy}\)
Đặt \(\sqrt{xy}=a\)
\(\Rightarrow2a\ge\frac{12a^2}{9+a^2}\)
\(\Leftrightarrow a\left(a-3\right)^2\ge0\) (đúng)
Vậy ta có điều phải chứng minh.
Dấu = xảy ra khi \(a=3\)hay \(x=y=3\)
Cho x,y dương. CMR: \(x+y\ge\dfrac{12xy}{9+xy}\)
Lời giải:
Áp dụng BDDT Cô-si cho các số dương:
\(x+y\geq 2\sqrt{xy}\)
\(9+xy\geq 2\sqrt{9xy}=6\sqrt{xy}\)
\(\Rightarrow (x+y)(9+xy)\geq 2\sqrt{xy}.6\sqrt{xy}=12xy\)
\(\Rightarrow x+y\geq \frac{12xy}{9+xy}\) (đpcm)
Dấu "=" xảy ra khi \(x=y>0; 9=xy\Rightarrow x=y=3\)
Cho x,y >0 CMR:\(x+y\ge\frac{12xy}{9+xy}\)
Chứng minh với x, y là các số thực dương:
\(\frac{x^3+y^3}{xy+9}\ge x+y-3\)
+)Với \(x+y-3< 3\) thì \(VT>0,VP< 0\Rightarrow VT>VP\)
Vậy BĐT đúng.
+)Với \(x+y-3=0\Rightarrow VP=0\). Mà \(VT=\frac{x^3+y^3}{xy+9}>0\forall x,y>0\Rightarrow VT>VP\)
Vậy BĐT đúng.
+) Với \(x+y-3>0\)
BĐT \(\Leftrightarrow x^3+y^3\ge\left(xy+9\right)\left(x+y-3\right)\)
Ta có: \(VT-VP=\frac{3}{4}\left(x+y-6\right)^2+\frac{1}{4}\left(x-y\right)^2\left[4\left(x+y-3\right)+9\right]\ge0\)
Ta có điều phải chứng minh.
Đẳng thức xảy ra khi \(x=y=3\)
Có cách nào ngắn hơn không ta? Em chỉ mới có 1 cách trên thôi.
Một cách khác được buff lại từ cách trên:
\(VT-VP=\frac{\frac{1}{4}\left(x-y\right)^2\left(4x^3+9xy+4y^3+81\right)+\frac{3}{4}\left(xy+9\right)\left(x+y-6\right)^2}{\left(x^2-xy+y^2+9\right)\left(xy+9\right)}\ge0\)
Ảo diệu chưa:P
Cho các số thực dương x,y thỏa mãn xy = 4 .Chứng minh x + y \(\ge\)4 và \(\frac{1}{x+3}+\frac{1}{y+3}\)\(\le\frac{2}{5}\)
Với mọi số thực ta luôn có:
`(x-y)^2>=0`
`<=>x^2-2xy+y^2>=0`
`<=>x^2+y^2>=2xy`
`<=>(x+y)^2>=4xy`
`<=>(x+y)^2>=16`
`<=>x+y>=4(đpcm)`
\(\dfrac{1}{x+3}+\dfrac{1}{y+3}=\dfrac{x+3+y+3}{\left(x+3\right)\left(y+3\right)}\)
\(=\dfrac{x+y+6}{3x+3y+13}\)(vì \(xy=4\))
=> \(\dfrac{x+y+6}{3x+3y+13}\)≤\(\dfrac{2}{5}\)
<=> \(5\left(x+y+6\right)\)≤\(2\left(3x+3y+13\right)\)
<=>\(6x+6y+26-5x-5y-30\)≥\(0\)
<=> \(x+y-4\)≥\(0\)
Áp dụng BĐT AM-GM \(\dfrac{a+b}{2}\)≥\(\sqrt{ab}\)
Ta có \(\dfrac{x+y}{2}\)≥\(\sqrt{xy}\)
<=>\(x+y\) ≥ 2\(\sqrt{xy}\)
=>2\(\sqrt{xy}-4\)≥\(0\)
<=> \(4-4\)≥0
<=>0≥0 ( Luôn đúng )
Vậy \(\dfrac{1}{x+3}+\dfrac{1}{y+3}\)≤\(\dfrac{2}{5}\)
cho các số thực dương x,y,x thỏa mãn xy ≥ 1 và z ≥1
Chứng minh bất đẳng thức \(\frac{x}{y+1}+\frac{y}{x+1}+\frac{z^3+2}{3\left(xy+1\right)}\ge\frac{3}{2}\)
Cho x, y là các số dương , chứng minh rằng:
\(\frac{x}{y}+y+\frac{1}{x}\ge\frac{x+y+1}{\sqrt[3]{xy}}\)
Cho 3 số dương x, y, z. Chứng minh rằng:
\(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge xy+yz+zx\)
Áp dụng BĐT cô si ta có:
\(\frac{x^3}{y}+xy\ge2\sqrt{\frac{x^3}{y}.xy}=2x^2.\)
tương tự ta có:
\(\frac{y^3}{z}+yz\ge2y^2.\)\(\frac{z^3}{x}+zx\ge2z^2.\)
cộng 3 bất đẳng thức trên lại ta có:
\(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}+xy+yz+xz\ge2\left(x^2+y^2+z^2\right).\)
Mặt khác ta có:\(x^2+y^2+z^2\ge xy+yz+xz\)
\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge x^2+y^2+z^2\ge xy+xz+yz\)
Đẳng thức xảy ra khi \(x=y=z\)
có thể sử dụng bbđt bunhiacopxki dàng phân thức
Chứng minh rằng với mọi số dương x,y ta luôn có bất đẳng thức \(\frac{x}{y}+\frac{y}{x}+\frac{xy}{\left(x+y\right)^2}\)\(\ge\)\(\frac{9}{4}\)
\(xy\le\frac{\left(x+y\right)^2}{4}\)( bđt cauchy )
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)( bđt cauchy )
\(\Rightarrow\frac{x}{y}+\frac{y}{x}+\frac{xy}{\left(x+y\right)^2}\ge2+\frac{\frac{\left(x+y\right)^2}{4}}{\left(x+y\right)^2}=2+\frac{1}{4}=\frac{9}{4}\)