Những câu hỏi liên quan
NL
Xem chi tiết
NH
Xem chi tiết
KN
Xem chi tiết
MT
Xem chi tiết
NT
Xem chi tiết
NT
23 tháng 12 2015 lúc 21:32

Đề : ab + 4bc + ca \(\le\)

Có : a + b + c = 0 => a = - b - c

Thay vào ab + 4bc + ca \(\le\)0 ta đc:

(-b - c).b + 4bc + c.(-b - c) \(\le\) 0

=> -b2 - bc + 4bc - bc - c2 \(\le\)0

=> -b2 - c2 + 2bc \(\le\)0

=> - (b2 - 2bc + c2\(\le\) 0

=> -(b - c)2 \(\le\) 0 (luôn đúng)

Vậy ab + 4bc + ca  \(\le\) 0

Bình luận (0)
NA
Xem chi tiết
TT
1 tháng 3 2017 lúc 6:51

abc bằng 0

Bình luận (0)
PN
Xem chi tiết
DA
Xem chi tiết
NM
25 tháng 12 2016 lúc 1:39

Ta có \(a+b+c=0\)

\(=>a=-b-c\)

Ta có \(ab+bc+ac\le0\)

\(=>\left(-b-c\right)b+bc+\left(-b-c\right)c\le0\)

\(=>-b^2-bc+bc-bc-c^2\le0\)

\(=>-b^2-bc-c^2\le0\)

\(=>-\left(b^2+bc+c^2\right)\le0\)(ĐPCM)

Bình luận (0)
YY
1 tháng 4 2017 lúc 21:05

\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)

\(a^2+b^2+c^2\ge0\)

\(a^2+b^2+c^2=-\left(2ab+2bc+2ac\right)\)

\(\Rightarrow2ab+2bc+2ca\le0\Leftrightarrow ab+bc+ac\le0\)

Bình luận (0)
TV
Xem chi tiết
DH
12 tháng 3 2017 lúc 6:47

Ta có : \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)

\(\Rightarrow ab+bc+ac=-\frac{1}{2}\left(a^2+b^2+c^2\right)\)

Vì \(a^2+b^2+c^2\ge0\)  \(\forall a;b;c\)

\(\Rightarrow-\frac{1}{2}\left(a^2+b^2+c^2\right)\le0\)  \(\forall a;b;c\)

Hay \(ab+bc+ac\le0\) (đpcm)

Bình luận (0)
LT
11 tháng 3 2017 lúc 23:17

ab + bc + ca<= 0  thì a10 +b10 + c10+(b+c+a)

Bình luận (0)
H24
12 tháng 3 2017 lúc 11:17

ab + bc + ac \(\le\)0 (đpcm)

  Ủng hộ tớ đi!

Bình luận (0)