Tìm GTLN và GTNN của biểu thức: P=x^2+2x-1/2x^2+4x+9
Tìm GTLN và GTNN của biểu thức sau : 4x+1/ x^2+2x+2
là \(4x+\dfrac{1}{x^2}+2x+2\) hay là \(\dfrac{4x+1}{x^2+2x+2}\) cái neog:0
\(P=\dfrac{4x+1}{x^2+2x+2}=\dfrac{x^2+2x+2-x^2+2x-1}{x^2+2x+2}=1-\dfrac{\left(x-1\right)^2}{x^2+2x+2}\le1\)
"=" xảy ra <=> x - 1 = 0 <=> x = 1
Vậy Max P = 1 <=> x = 1
P = \(\dfrac{4x+1}{x^2+2x+2}=\dfrac{-4x^2-8x-8+4x^2+12x+9}{x^2+2x+2}=-4+\dfrac{\left(2x+3\right)^2}{x^2+2x+2}\)
\(\ge-4\)
"=" xảy ra <=> 2x + 3 = 0 <=> x = -1,5
Vậy Min P = -4 <=> x = -1,5
Tìm GTNN và GTLN nếu có của các biểu thức
\(A=\dfrac{2x^2-2x+5}{\left(x+1\right)^2}\)
\(B=\dfrac{4x^2+x+4}{x^2+x+1}\)
Biểu thức nào em?
Cho hai số x,y thỏa mãn điều kiện 4x^2+y^2=1. Tìm GTLN và GTNN cảu biểu thức (2x+2y)/(2x+y+2)
Cho hai số x,y thỏa mãn điều kiện 4x^2+y^2=1. Tìm GTLN và GTNN cảu biểu thức (2x+2y)/(2x+y+2)
Cho hai số x,y thỏa mãn điều kiện 4x^2+y^2=1. Tìm GTLN và GTNN cảu biểu thức (2x+2y)/(2x+y+2)
Cho hai số x,y thỏa mãn điều kiện 4x^2+y^2=1. Tìm GTLN và GTNN cảu biểu thức (2x+2y)/(2x+y+2)
Cho hai số x,y thỏa mãn điều kiện 4x^2+y^2=1. Tìm GTLN và GTNN cảu biểu thức (2x+2y)/(2x+y+2)
Cho biểu thức A = (4x+5) / x^2 + 2x +6 với x thuộc R . Tìm GTNN và GTLN của A
Ta có:
\(A=\frac{4x+5}{x^2+2x+6}=\frac{x^2+2x+6-x^2-2x-6+4x+5}{x^2+2x+6}\)
\(=\frac{\left(x^2+2x+6\right)-x^2+2x-1}{x^2+2x+6}=1-\frac{\left(x-1\right)^2}{x^2+2x+6}\le1\)
=> max A = 1 tại x = 1
\(A=\frac{4x+5}{x^2+2x+6}=\frac{-\frac{4}{5}\left(x^2+2x+6\right)+\frac{4}{5}\left(x^2+2x+6\right)+4x+5}{x^2+2x+6}\)
\(=-\frac{4}{5}+\frac{4x^2+28x+49}{5\left(x^2+2x+6\right)}=-\frac{4}{5}+\frac{\left(2x+7\right)^2}{5\left(x^2+2x+6\right)}\ge-\frac{4}{5}\)
=> min A = -4/5 <=> 2x + 7 = 0 <=> x = -7/2
Vậy...
Tìm GTLN của biểu thức:
A=-x^2+6x-15
B=-2x^2+8x-15
C=-3^2+2x-1
D=-5x^2-25x+49
Tìm GTNN của biểu thức:
A=x^2-4x+7
B=x^2+8x
C=2x^2+4x+15
D=3x^2-2x-1
Tìm GTLN:
\(A=-x^2+6x-15\)
\(=-\left(x^2-6x+15\right)\)
\(=-\left(x^2-2.x.3+9+6\right)\)
\(=-\left(x+3\right)^2-6\le0\forall x\)
Dấu = xảy ra khi:
\(x-3=0\Leftrightarrow x=3\)
Vậy Amax = - 6 tại x = 3
Tìm GTNN :
\(A=x^2-4x+7\)
\(=x^2+2.x.2+4+3\)
\(=\left(x+2\right)^2+3\ge0\forall x\)
Dấu = xảy ra khi:
\(x+2=0\Leftrightarrow x=-2\)
Vậy Amin = 3 tại x = - 2
Các câu còn lại làm tương tự nhé... :)