Tính các cạnh của hình chữ nhật ABCD biết AH vuông góc với BD, DH=9cm, BH=16cm và \(AB^2-AD^2=175\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tính các cạnh của hình chữ nhật ABCD biết AH vuông góc với BD, DH=9cm, BH=16cm và \(AB^2-AD^2=175\)
BD=9+16=25cm
=>AB^2+AD^2=625
mà AB^2-AD^2=175
nên AB^2=400; AD^2=225
=>AB=20cm; AD=15cm
=>DC=20cm; BC=15cm
Cho hình chữ nhật ABCD, kẻ AH vuông góc với BD tại H.
a) Cm tam giác ADH đồng dạng với tam giác BAH, suy ra AH^2 = DH.BH
b) Tính AD, AB biết DH = 9cm, BH = 16cm
c) Gọi K, M, N lần lượt là trung điểm của AH, BH, CD. Cm tứ giác MNDK là hình bình hành và góc AMN = 90o
a: Xét ΔADH vuông tại H và ΔABH vuông tại H có
góc HAD=góc HBA
Do đó: ΔADH đồng dạng với ΔBAH
Suy ra: HA/HB=HD/HA
hay \(HA^2=HD\cdot HB\)
b: \(BD=9+16=25cm\)
\(AD=\sqrt{9\cdot25}=15\left(cm\right)\)
AB=20cm
c: Xét ΔAHB có
K là trung điểm của AH
M là trung điểm của HB
Do đó: KM là đường trung bình
=>KM//AB và KM=AB/2
=>KM//DN và KM=DN
=>DKMN là hình bình hành
Tính AB , AD của hình chữ nhật ABCD biết đường vuông góc AH kẻ từ A đến BD chia đoạn BD thành 2 đoạn thẳng HD=9cm , HB=16cm
Cho hình chữ nhật ABCD. Qua A kẻ đường thẳng vuông góc với BD, cắt BD ở H. Biết rằng DH = 9cm; BH = 16cm. Chu vi hình chữ nhật ABCD bằng cm.
1.Cho tam giác ABCcân tại A có AB = AC = 100cm, BC = 120cm. Hai đường cao AD, BE cắt nhau tại H.a)Tìm các tam giác đồng dạng với tam giác BDHb)Tình độ dài các đoạn: HD, AH, BH, EH
2.Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Đường cao AH, đường phân giác BDa)Tình độ dài AD, DCb)Gọi I là giao điểm của AH và BD. C/m: AB.BI = BD.HBc)C/m: Tam giác AID cân
3.Cho hình thang cân ABCD (AB//CD), AB < CD. Đường cao BH chia cạnh CD thành 2 đoạn DH = 16cm, HC = 9cm. Biết BD vuông góc BC.a)Tính đường chéo AC và BD của hình thangb)Tính diện tích hình thangc)Tính chu vi hình thang
Cho hình chữ nhật ABCD , vẽ AH vuông góc với đường chéo BDa) Chứng minh tam giác DHA đồng dạng với tam giác DAB.b) Cho DH=4cm, HB=9cm. Tính AH.c) Chứng minh \(\dfrac{AD^2}{AB^2}\) = \(\dfrac{DH}{BH}\)
a: Xét ΔDHA vuông tại H và ΔDAB vuông tại A có
góc HDA chung
=>ΔDHA đồng dạng với ΔDAB
b: \(AH=\sqrt{4\cdot9}=6\left(cm\right)\)
Cho hình chữ nhật ABCD , vẽ AH vuông góc với đường chéo BDa) Chứng minh tam giác DHA đồng dạng với tam giác DAB.b) Cho DH=4cm, HB=9cm. Tính AH.c) Chứng minh \(\dfrac{AD^2}{AB^2}\) =\(\dfrac{DH}{BH}\)
a: Xét ΔDHA vuông tại H và ΔDAB vuông tại A có
góc HDA chung
=>ΔDHA đồng dạng với ΔDAB
b: \(AH=\sqrt{4\cdot9}=6\left(cm\right)\)
c: \(\dfrac{AD^2}{AB^2}=\dfrac{DH\cdot BD}{BH\cdot BD}=\dfrac{HD}{HB}\)
Cho hình chữ nhật ABCD. Qua A kẻ đường thẳng vuông góc với BD, cắt BD ở H. Biết rằng DH = 9cm; BH = 16cm. Chu vi hình chữ nhật ABCD bằng... cm.
Xét \(\Delta\)ABH và \(\Delta\) DAH có
^AHB=^DHA=90(gt)
^BAH=^ADH (cùng phụ với ^DAH)
=> \(\Delta\)ABH~\(\Delta\)DAH(g.g)
=> \(\frac{AH}{DH}=\frac{BH}{AH}\)
=>\(AH^2=DH\cdot BH=9\cdot16=144\)
=> AH=12cm
Xét \(\Delta\)ADH vuông tại H(gt)
=>\(AD^2=HA^2+HD^2\) (theo dl pytago)
=> \(AD^2=9^2+12^2=225\)
=>AD=15cm
Xét \(\Delta\)AHB vuông tại A(gt)
=>\(AB^2=HA^2+HB^2\) (theo đl pytago)
=>\(AB^2=16^2+12^2=400\)
=>AB=20cm
Chu vi cua hình chữ nhật ABCD là:
(AB+AD)*2=(15+20)*2=70cm
Áp dụng hệ thức lượng trong tam giác vuông ta có:
AB^2=BH*BD <=> AB=15
AD^2=DH*BD <=> AD=20
=> chu vi hình chữ nhật là 2*(15+20) = 70 cm
cho hình thang cân ABCD (2 đáy AB,CD và AB<CD). đường cao BH chia cạnh đáy CD thành 2 đoạn DH=16cm, HC=9cm. biết BD vuông góc BC.C/m:
a)tính BD ;BC; BH?
b)tính chu vi ,diện tích tứ giác ABCD?