Những câu hỏi liên quan
NM
Xem chi tiết
LH
2 tháng 3 2019 lúc 21:25

Cho x,y,z là các sô dương.Chứng minh rằng x/2x+y+z+y/2y+z+x+z/2z+x+y<=3/4

Bình luận (0)
NM
Xem chi tiết
LN
Xem chi tiết
VC
Xem chi tiết
BB
Xem chi tiết
LM
Xem chi tiết
NT
Xem chi tiết
LD
31 tháng 3 2022 lúc 14:48

bạn tải ảnh về r up lại đi bạn

Bình luận (0)
LD
31 tháng 3 2022 lúc 15:50

\(a,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12\)

\(\Leftrightarrow4x^2-24x+36-4x^2-4x+1\ge12\)

\(\Leftrightarrow-28x+37\ge12\)

\(\Leftrightarrow-28x\ge12-37\)

\(\Leftrightarrow-28x\ge-25\)

\(\Leftrightarrow x\le\dfrac{25}{28}\)

Vậy \(S=\left\{x\left|x\le\dfrac{25}{28}\right|\right\}\)

b, \(\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)

\(\Leftrightarrow x^2-16\ge x^2+6x+9+5\)

\(\Leftrightarrow x^2-x^2-6x\ge9+5+16\)

\(\Leftrightarrow-6x\ge30\)

\(\Leftrightarrow x\le-5\)

Vậy \(S=\left\{x\left|x\le-5\right|\right\}\)

\(c,\left(3x-1\right)^2-9\left(x+2\right)\left(x-2\right)< 5x\)

\(\Leftrightarrow9x^2-6x-1-9x^2+36< 5x\)

\(\Leftrightarrow9x^2-9x^2-6x-5x+36+1< 0\)

\(\Leftrightarrow-11x+37< 0\)

\(\Leftrightarrow-11x< -37\)

\(\Leftrightarrow x>\dfrac{37}{11}\)

vậy \(S=\left\{x\left|x>\dfrac{37}{11}\right|\right\}\)

Bình luận (0)
TD
Xem chi tiết
ND
17 tháng 5 2021 lúc 21:24

1. \(\left|\frac{2x^2-x}{3x-4}\right|\ge1\) Điều kiện: \(x\ne\frac{4}{3}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{2x^2-x}{3x-4}\ge1\\\frac{2x^2-x}{3x-4}\le-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{x^2-2x+2}{3x-4}\ge0\\\frac{x^2+x-2}{3x-4}\le0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x>\frac{4}{3}\\x\in(-\infty;-2]U[1;\frac{4}{3})\end{cases}}\Leftrightarrow x\in(-\infty;-2]U[1;+\infty)\backslash\left\{\frac{4}{3}\right\}\)

2.\(\hept{\begin{cases}x^2\le-2x+3\left(1\right)\\\left(m+1\right)x\ge2m-1\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow x^2+2x-3\le0\Leftrightarrow-3\le x\le1\)

+) Nếu \(m=-1\) thì (2) vô nghiệm, suy ra \(m\ne-1\)

+) Nếu \(m>-1\) thì \(\left(2\right)\Leftrightarrow x\ge\frac{2m-1}{m+1}\)

Hệ BPT có nghiệm duy nhất \(\Leftrightarrow\frac{2m-1}{m+1}=1\Leftrightarrow m=2>-1\)

+) Nếu \(m< -1\)thì \(\left(2\right)\Leftrightarrow x\le\frac{2m-1}{m+1}\)

Hệ BPT có nghiệm duy nhất \(\Leftrightarrow\frac{2m-1}{m+1}=-3\Leftrightarrow m=-\frac{2}{5}< -1\)

Vậy \(m=\left\{\frac{-2}{5};2\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
NS
19 tháng 5 2021 lúc 21:40

1. |2x2−x3x−4 |≥1 Điều kiện: x≠43 

⇔[

2x2−x3x−4 ≥1
2x2−x3x−4 ≤−1

⇔[

x2−2x+23x−4 ≥0
x2+x−23x−4 ≤0

⇔[

x>43 
x∈(−∞;−2]U[1;43 )

⇔x∈(−∞;−2]U[1;+∞)\{43 }

2.{

x2≤−2x+3(1)
(m+1)x≥2m−1(2)

(1)⇔x2+2x−3≤0⇔−3≤x≤1

Bình luận (0)
 Khách vãng lai đã xóa
PM
18 tháng 9 2021 lúc 9:23

\Leftrightarrow \left[\begin{aligned}&{x>\dfrac{4}{3} } \\ &{1\le x<\dfrac{4}{3} } \\ &{x\le -2} \end{aligned}\right. .

Tập nghiệm :S=\left(-\infty ;-2\right]\cup \left[1;\dfrac{4}{3} \right)\cup \left(\dfrac{4}{3} ;+\infty \right).

2.

Ta có: \left\{\begin{aligned}&{x^{2} \le -2x+3} \\ &{\left(m+1\right)x\ge 2m-1} \end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&{x^{2} +2x-3\le 0} \\ &{\left(m+1\right)x\ge 2m-1} \end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&{-3\le x\le 1} \\ &{\left(m+1\right)x\ge 2m-1} \end{aligned}\right.

Bình luận (0)
 Khách vãng lai đã xóa
TP
Xem chi tiết
PA
16 tháng 10 2016 lúc 21:11

sao đề nhìn bá vậy bạn ...

Bình luận (0)
TN
16 tháng 10 2016 lúc 21:45

bài này chắc đặt \(\sqrt{x^3-3x+6}\)cho nó gọn thôi

Bình luận (0)