(2x-1)^2018+(y-2018/2019)^2018+|x+y+z=0
Tìm x,y,z biết:
a) \(2019-|x-2019|=x\)
b) \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}+|x+y-z|=0\)
a)\(2019-\left|x-2019\right|=x\)
\(\Rightarrow2019-x=\left|x-2019\right|\)
=>\(\left|x-2019\right|=-\left(x-2019\right)\)
=>\(x-2019\le0\)
=>\(x\le2019\)
b) Vì \(\left(2x-1\right)^{2018}\ge0\forall x\)
\(\left(y-\frac{2}{5}\right)^{2018}\ge0\forall y\)
\(\left|x+y-z\right|\ge0\forall x,y,z\)
=> \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|\ge0\forall x,y,z\)
mà \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}}\)=>\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}\)
a, Ta có:
\(\left|x-2019\right|=\orbr{\begin{cases}x-2019\ge0\Rightarrow x\ge2019\\-x+2019< 0\Rightarrow x< 2019\end{cases}}\)
Xét x<2019 thì |x-2019|=-x+2019
Khi đó: 2019-(-x+2019)=x
\(\Leftrightarrow\)-x+2019=2019-x
\(\Leftrightarrow\)-x+2019+x=2019
\(\Leftrightarrow\)0x+2019=2019
\(\Leftrightarrow\)0x=0 (thỏa mãn)
Xét 2019\(\le\)x thì |x-2019|=x-2019
Khi đó 2019-(x-2019)=x
\(\Leftrightarrow\)2019-x+2019=x
\(\Leftrightarrow\)4038-x=x
\(\Leftrightarrow\)4038=2x
\(\Leftrightarrow\)x=2019(thỏa mãn)
Vậy .......................................................!!!
Chứng minh rằng :
a) 2x + 2y / x + y = 2 ( x + y khác 0 )
b) 2018 / 2019 = 2018 . 2018 . 2018 / 2019 . 2019 . 2019
giúp mk nha mn . ai nhanh mk tick !!!
a, 2x+2y/x+y=2
=> 2(x+y)/x+y=2
=>2/1=2
=> đpcm
Câu b thì mình nghĩ nó không thể bằng được đâu bạn
Cho x, y, z thỏa mãn:
\(\frac{x}{2017}+\frac{y}{2018}+\frac{z}{2019}=1\)
\(\frac{2017}{x}+\frac{2018}{y}+\frac{2019}{z}=0\)
CMR:\(\frac{x^2}{2017^2}+\frac{y^2}{2018^2}+\frac{z^2}{2019^2}=1\)
cho x^2018+y^2018+z^20018+t^2018/a^2+b^2+c^2+d^2
=x^2018/a^2+y^2018/b^2+z^2018/c^2+t^2018/d^2tính T=x^2019+y^2019+z^2019+t^2019
giúp mik nha mn ơi.
mik cần gấp bâgiowf
Cho a,b,c,d khác 0, thỏa mãn :
\(\frac{x^{2018}+y^{2018}+z^{2018}+t^{2018}}{a^2+b^2+c^2+d^2}\) =\(\frac{x^{2018}}{a^2}\)+\(\frac{y^{2018}}{b^2}\)
Tính A=x2019+y2019+z2019+t2019
Chứng minh rằng :
a) 2x + 2y / x + y = 2 ( x + y khác 0 )
b) 2018 / 2019 = 2018 . 2018 . 2018 / 2019 . 2019 . 2019
giúp mk nha mn . ai nhanh mk tick !!!
a)
Ta có \(\dfrac{2x+2y}{x+y}=\dfrac{2\left(x+y\right)}{x+y}=2\)
\(\left(x+y\ne0\right)\)
b) Cậu xem lại đề nhé, sai rồi kìa
Cho các số x,y thuộc tập n thỏa mãn (x + y - 3)^ 2018 + 2018x (2x - 4)^2020 = 0
Tính giá trị của biểu thức S = (x -1)^2019 +( 2 - y)^2019 = 2018
Nhận xét : ( x + y - 3 )^2018 >=0 và 2018.(2x-4)^2020 >= 0
=> (x+y-3)^2018 + 2018.(2x-4)^2020 >=0
Dấu = xảy ra khi : x + y - 3 = 0 và 2x - 4 = 0 => x = 2 và y = 1
Thay vào bt S :
S = ( 2 - 1)^2019 + (2-1)^2019
= 1^2019 + 1^2019 = 2
Cho các số thực x,y,z thỏa mãn
3(x^2+y^2+z^2)=(x+y+z) và x^2018+y^2018+z^2018=27^671
tính gt của bt A=(x+2y-4z)^2018/3^2018 + 2019
Cho\(x+y+Z=2018,\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{2018}\)
Tính \(D=x^{2019}+y^{2019}+z^{2019}\)
\(x+y+z=2018\)\(\Rightarrow\)\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{2018}=\dfrac{1}{x+y+z}\)
\(\Leftrightarrow\dfrac{xy+yz+zx}{xyz}=\dfrac{1}{x+y+z}\)
\(\Leftrightarrow\left(xy+yz+zx\right)\left(x+y+z\right)=xyz\\ \Leftrightarrow x^2y+xy^2+xyz+xyz+y^2z+\\ yz^2+zx^2+xyz+z^2x-xyz=0\)
\(\Leftrightarrow x^2y+xy^2+xyz+xyz+\\ y^2z+yz^2+zx^2+z^2x=0\)
\(\Leftrightarrow xy\left(x+y\right)+yz\left(x+y\right)+xz\left(x+y\right)+z^2\left(x+y\right)=0\\ \Leftrightarrow\left(x+y\right)\left(xy+yz+xz+z^2\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(y\left(x+z\right)+z\left(x+z\right)\right)=0\\ \Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
suy ra x+y=0 hoặc y+z=0 hoặc x+z=0
hay x=-y hoặc y=-z hoặc x=-z
thay vào D ta tính dc kq