Những câu hỏi liên quan
PN
Xem chi tiết
TL
31 tháng 10 2020 lúc 5:43

Khi đó phương trình đã cho tương đương với: \(4\left(\sqrt{x+2}-2\right)+\left(\sqrt{22-3x}-4\right)=x^2-4\)

\(\Leftrightarrow\frac{4\left(x-2\right)}{\sqrt{x+2}-2}+\frac{3\left(2-x\right)}{\sqrt{22-3x}+4}=\left(x-2\right)\left(x+2\right)\)

\(\Leftrightarrow\left(x-2\right)\left(x+2-\frac{4}{\sqrt{x+2}-2}+\frac{3}{\sqrt{22-3x}+4}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x+2-\frac{4}{\sqrt{x+2}-2}+\frac{3}{\sqrt{22-3x}+4}=0\end{cases}\left(1\right)}\)

Xét hàm số f(x)=\(x+2-\frac{4}{\sqrt{x+2}-2}+\frac{3}{\sqrt{22-3x}+4}\left(-2\le x\le\frac{10}{3}\right)\)

Ta có \(f'\left(x\right)=1+\frac{2}{\sqrt{x+2}+\left(\sqrt{x+2}-2\right)}+\frac{9}{\sqrt{22-3x}\left(\sqrt{22-3x}+4\right)}>0\)với mọi \(x\in\left(-2;\frac{22}{3}\right)\)Do đó hàm f(x) đồng biến trên \(x\in\left[-2;\frac{22}{3}\right]\)

Mặt khác ta thấy f(-1)=0 nên x=-1 là nghiệm duy nhất của phương trình (1)

Vậy x=2;x=-1 là nghiệm của phương trình

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
HP
7 tháng 8 2021 lúc 14:53

a, ĐK: \(x\le-1,x\ge3\)

\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)

\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)

\(\Leftrightarrow x^2-2x-3=1\)

\(\Leftrightarrow x^2-2x-4=0\)

\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)

Bình luận (0)
HP
7 tháng 8 2021 lúc 15:05

b, ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)

Khi đó phương trình tương đương:

\(3t-t^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)

Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm

Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)

Bình luận (0)
HP
7 tháng 8 2021 lúc 15:23

c, ĐK: \(0\le x\le9\)

Đặt \(\sqrt{9x-x^2}=t\left(0\le t\le\dfrac{9}{2}\right)\)

\(pt\Leftrightarrow9+2\sqrt{9x-x^2}=-x^2+9x+m\)

\(\Leftrightarrow-\left(-x^2+9x\right)+2\sqrt{9x-x^2}+9=m\)

\(\Leftrightarrow-t^2+2t+9=m\)

Khi \(m=9,pt\Leftrightarrow-t^2+2t=0\Leftrightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}9x-x^2=0\\9x-x^2=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=9\left(tm\right)\\x=\dfrac{9\pm\sqrt{65}}{2}\left(tm\right)\end{matrix}\right.\)

Phương trình đã cho có nghiệm khi phương trình \(m=f\left(t\right)=-t^2+2t+9\) có nghiệm

\(\Leftrightarrow minf\left(t\right)\le m\le maxf\left(t\right)\)

\(\Leftrightarrow-\dfrac{9}{4}\le m\le10\)

Bình luận (0)
LD
Xem chi tiết
NT
16 tháng 5 2023 lúc 9:09

2:

a: =>2x^2-4x-2=x^2-x-2

=>x^2-3x=0

=>x=0(loại) hoặc x=3

b: =>(x+1)(x+4)<0

=>-4<x<-1

d: =>x^2-2x-7=-x^2+6x-4

=>2x^2-8x-3=0

=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)

 

Bình luận (0)
BB
Xem chi tiết
MH
20 tháng 11 2023 lúc 9:49

\(\sqrt{24+8\sqrt{9-x^2}}=x+2\sqrt{3-x}+4\) \(\left(Đk:-3\le x\le3\right)\)

\(\sqrt{4\left(x+3\right)+8\sqrt{9-x^2}+4\left(3-x\right)}=x+2\sqrt{3-x}+4\)

\(\sqrt{\left(2\sqrt{x+3}+2\sqrt{3-x}\right)^2}=x+2\sqrt{3-x}+4\)

\(2\sqrt{x+3}+2\sqrt{3-x}=x+2\sqrt{3-x}+4\)

\(2\sqrt{x+3}=x+4\)

\(4\left(x+3\right)=x^2+8x+14\)

\(x^2+4x+2=0\)

\(\Delta=16-8=8\)

\(\Delta>0\)=> phương trình có 2 nghiệm phân biệt

\(\left[{}\begin{matrix}x=\dfrac{-4+2\sqrt{2}}{2}=-2+\sqrt{2}\\x=\dfrac{-4-2\sqrt{2}}{2}=-2-\sqrt{2}\end{matrix}\right.\)

Bình luận (0)
DQ
Xem chi tiết
LT
15 tháng 3 2021 lúc 11:16

Bài 1:

a) \(A=\sqrt{8}+\sqrt{18}-\sqrt{32}\)

\(=2\sqrt{2}+3\sqrt{2}-4\sqrt{2}\)

\(=\sqrt{2}\)

b) \(B=\sqrt{9-4\sqrt{5}}-\sqrt{5}\)

\(=\sqrt{4-4\sqrt{5}+5}-\sqrt{5}\)

\(=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{5}\)

\(=\left|2-\sqrt{5}\right|-\sqrt{5}\)

\(=\sqrt{5}-2-\sqrt{5}\)

\(=-2\)

Bình luận (0)
LT
15 tháng 3 2021 lúc 11:41

Bài 2:

a) \(\left\{{}\begin{matrix}2x-3y=4\\x+3y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\x+3y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2+3y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

Vậy phương trình có nghiệm là: \(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

b) ĐKXĐ: \(x\ne\pm2\)

Với \(x\ne\pm2\), ta có:

\(\dfrac{10}{x^2-4}+\dfrac{1}{2-x}=1\)

\(\Leftrightarrow\dfrac{10}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x-2}=1\)

\(\Leftrightarrow\dfrac{10-x-2}{x^2-4}=1\)

\(\Leftrightarrow\dfrac{8-x}{x^2-4}=1\)

\(\Rightarrow x^2-4=8-x\)

\(\Leftrightarrow x^2+x-12=0\)

\(\Leftrightarrow x^2-3x+4x-12=0\)

\(\Leftrightarrow x\left(x-3\right)+4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\) (TM)

Vậy phương trình có tập nghiệm là: S ={3; -4}

Bình luận (0)
LT
15 tháng 3 2021 lúc 12:05

Gọi số tấn than mỗi ngày đội thợ phải khai thác theo kế hoạch là: x(tấn). 0 < x <260

Số tấn than đã khai thác thực tế trong mỗi ngày là: x + 3 (tấn)

Số ngày mà đội thợ khai thác 260 tấn trong kế hoạch là: \(\dfrac{260}{x}\) (ngày)

Số ngày mà đội thợ khai thác 261 tấn thực tế là: \(\dfrac{261}{x+3}\) (ngày)

Vì trên thực tế, mỗi ngày đội đều khai thác vượt định mức 3 tấn, do đó họ đã khai thác được 261 tấn than và xong trước thời hạn một ngày nên ta có phương trình:

\(\dfrac{261}{x+3}+1=\dfrac{260}{x}\)

\(\Leftrightarrow\dfrac{261+x+3}{x+3}=\dfrac{260}{x}\)

\(\Leftrightarrow\dfrac{264+x}{x+3}=\dfrac{260}{x}\)

\(\Rightarrow260\left(x+3\right)=x\left(264+x\right)\)

\(\Leftrightarrow260x+780=264x+x^2\)

\(\Leftrightarrow x^2+4x-780=0\)

\(\Leftrightarrow x^2-26x+30x-780=0\)

\(\Leftrightarrow x\left(x-26\right)+30\left(x-26\right)=0\)

\(\Leftrightarrow\left(x-26\right)\left(x+30\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-26=0\\x+30=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=26\left(TM\right)\\x=-30\left(loại\right)\end{matrix}\right.\)

Vậy số tấn than mỗi ngày đội thợ phải khai thác theo kế hoạch là: 26 tấn

Bình luận (0)
TN
Xem chi tiết
NM
14 tháng 10 2021 lúc 17:01

\(ĐK:x\ge-3\\ PT\Leftrightarrow x^2-x+8-4\sqrt{x+3}=0\\ \Leftrightarrow x\left(x-1\right)-4\left(\sqrt{x+3}-2\right)=0\\ \Leftrightarrow x\left(x-1\right)-\dfrac{4\left(x-1\right)}{\sqrt{x+3}+2}=0\\ \Leftrightarrow\left(x-1\right)\left(x-\dfrac{4}{\sqrt{x+3}+2}\right)=0\\ \Leftrightarrow x=1\left(x-\dfrac{4}{\sqrt{x+3}+2}< 0\right)\)

Bình luận (1)
NL
Xem chi tiết
TK
19 tháng 8 2021 lúc 9:51

1/\(\sqrt{x-4}-\sqrt{1-x}=1\)

Để Pt dc xác định

Thì\(\left\{{}\begin{matrix}x-4\ge0\\1-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x\le1\end{matrix}\right.\)

Vì xét trên trục số ta thấy nó loại nhau

Nên Pt này vô nghiệm

 

 

 

Bình luận (0)
NH
19 tháng 8 2021 lúc 9:54

1)ĐKXĐ: \(-4\le x\le1\)

\(\sqrt{x+4}-\sqrt{1-x}=1\\ \Rightarrow\sqrt{x+4}=\sqrt{1-x}+1\\ \Rightarrow x+4=1-x+2\sqrt{1-x}+1\\ \Rightarrow2x+2=2\sqrt{1-x}\\ \Rightarrow x+1=\sqrt{1-x}\\ \Rightarrow x^2+2x+1=1-x\\ \Rightarrow x^2+3x=0\\ \Rightarrow x\left(x+3\right)=0\\ \Rightarrow x=-3\)

Vậy x = -3

2)ĐKXĐ: \(-\sqrt{10}\le x\le\sqrt{10}\)

Với x = -3 thì:

0=0(luôn đúng)

Với x khác -3 thì:

\(\left(x+3\right)\sqrt{10-x^2}=x^2-x+12\\ \Rightarrow\left(x+3\right)\sqrt{10-x^2}=\left(x+3\right)\left(x-4\right)\\ \Rightarrow\sqrt{10-x^2}=x-4\\ \Rightarrow10-x^2=x^2-8x+16\\ \Rightarrow2x^2-8x+6=0\\ \Rightarrow x^2-4x+3=0\\ \Rightarrow\left(x-1\right)\left(x-3\right)=0\\ \Rightarrow x\in\left\{1;3\right\}\)

Vậy x\(\in\left\{-3;1;3\right\}\)

Bình luận (0)
ES
Xem chi tiết
LC
29 tháng 7 2021 lúc 0:08

1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)

Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)

2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)

\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)

\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)

Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)

\(\Rightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy pt có no x=2

Bình luận (0)
 Khách vãng lai đã xóa
NV
Xem chi tiết
AH
29 tháng 4 2023 lúc 16:10

Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$

$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$

$\Leftrightarrow x-2=0$ hoặc $4-x=0$

$\Leftrightarrow x=2$ hoặc $x=4$ (tm)

Bình luận (0)
AH
29 tháng 4 2023 lúc 16:47

Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$

$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$

Với $4x^3-3x^2+6x-4=0(*)$

Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$

Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:

$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$

Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)

Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)

 

Bình luận (0)
NV
29 tháng 4 2023 lúc 17:11

Nãy mình tìm được một cách giải tương tự cho câu 2.

PT \(\Leftrightarrow\left(x-1\right)\left(4x^3-3x^2+6x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\4x^3-3x^2+6x-4=0\left(1\right)\end{matrix}\right.\)

Vậy pt có 1 nghiệm bằng 1.

\(\left(1\right)\Rightarrow8x^3-6x^2+12x-8=0\)

\(\Leftrightarrow7x^3+x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(x-2\right)^3=-7x^3\)

\(\Leftrightarrow x-2=-\sqrt[3]{7}x\)

\(\Leftrightarrow x=\dfrac{2}{1+\sqrt[3]{7}}\)

Vậy pt có nghiệm \(S=\left\{1;\dfrac{2}{1+\sqrt[3]{7}}\right\}\)

Lưu ý: Nghiệm của người kia hoàn toàn tương đồng với nghiệm của mình (\(\dfrac{2}{1+\sqrt[3]{7}}=\dfrac{1}{4}\left(1-\sqrt[3]{7}+\sqrt[3]{49}\right)\))

Bình luận (0)
HM
Xem chi tiết
TC
27 tháng 8 2021 lúc 10:41

undefined

Bình luận (0)
TC
27 tháng 8 2021 lúc 10:44

undefined

Bình luận (0)
NT
27 tháng 8 2021 lúc 13:54

b: Ta có: \(\sqrt{4x+8}+\dfrac{1}{3}\sqrt{9x+18}=3\sqrt{\dfrac{x+2}{4}}+\sqrt{2}\)

\(\Leftrightarrow2\sqrt{x+2}+\dfrac{1}{3}\cdot3\sqrt{x+2}-\dfrac{3}{2}\sqrt{x+2}=\sqrt{2}\)

\(\Leftrightarrow\sqrt{x+2}\cdot\dfrac{3}{2}=\sqrt{2}\)

\(\Leftrightarrow\sqrt{x+2}=\dfrac{2\sqrt{2}}{3}\)

\(\Leftrightarrow x+2=\dfrac{8}{9}\)

hay \(x=-\dfrac{10}{9}\)

Bình luận (0)