Những câu hỏi liên quan
NM
Xem chi tiết
H24
Xem chi tiết
ZP

\(5x^4+y^2-4x^2y-85=0\)

\(\left(2x^2\right)^2-2.2x^2.y+y^2+x^4=85\)

\(\left(2x^2-y\right)^2+x^4=85\)

Mà \(85=2^2+3^4=\left(-2\right)^2+\left(-3\right)^4\)

Vì phương trình nghiệm nguyên nên:

\(\left(2x^2-y\right)^2+x^4=2^2+3^4\)

\(\Rightarrow\orbr{\begin{cases}2x^2-y=2\\x=3\end{cases}}\)     hoặc      \(\orbr{\begin{cases}2x^2-y=3\\x=2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2.3^2-y=2\\x=3\end{cases}}\)   hoặc       \(\orbr{\begin{cases}2.2^2-y=3\\x=2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}18-y=2\\x=3\end{cases}}\)      hoặc         \(\orbr{\begin{cases}8-y=3\\x=2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}y=16\\x=3\end{cases}}\)                hoặc         \(\orbr{\begin{cases}y=5\\x=2\end{cases}}\)

Vậy..............

Bình luận (0)
TT
Xem chi tiết
DK
28 tháng 2 2016 lúc 10:08

Đặt \(x^2=a\ge0\)

\(PT\Leftrightarrow5a^2+y^2-4ay-85=0\)

        \(\Leftrightarrow y^2-4ay+5a^2-85=0\)

PT có nghiệm <=> \(\Delta'\ge0\)

                     \(\Leftrightarrow4a^2-\left(5a^2-85\right)\ge0\)

                     \(\Leftrightarrow-a^2+85\ge0\)

                     \(\Leftrightarrow0\le a^2\le85\)

                     \(\Leftrightarrow0\le x^4\le85\)

                     \(\Leftrightarrow0\le x\le\sqrt[4]{85}\)

                \(\Rightarrow x\in\left\{0;1;2;3\right\}\)

\(x=0\Rightarrow y=\sqrt{85}\left(loại\right)\)\(x=1\Rightarrow y=2+2\sqrt{21}hoặcy=2-2\sqrt{21}\left(loại\right)\) 

     3.  \(x=2\Rightarrow y=8-\sqrt{69}hoặcy=8+\sqrt{69}\left(loại\right)\)​  

     4.  \(x=3\Rightarrow y=16hoặcy=20\left(tm\right)\)

Vậy (x;y):(3;16),(3;20)

Bình luận (0)
NN
Xem chi tiết
PK
19 tháng 8 2018 lúc 20:46

\(5x^4+y^2-4x^2y-85=0\)

\(\Leftrightarrow x^4=4x^2-4x^2y+y^2-85=0\)

\(\Leftrightarrow x^4+\left(2x^2-y\right)^2=85\)

\(\Leftrightarrow x^4\in\left\{3^4;2^4;1^4;0^4\right\}\)

tiếp tục xét lần lượt các trường hợp:

+) nếu \(x^4=0^4\Rightarrow x=0\Rightarrow y^2=85\Rightarrow y\in\varnothing\)

+) nếu \(x^4=1^4\Rightarrow x=\pm1\Rightarrow\left(y-2\right)^2=84\Rightarrow y\in\varnothing\)

+) nếu \(x^4=2^4\Rightarrow x=\pm2\Rightarrow\left(y-8\right)^2=69\Rightarrow x\in\varnothing\)

+) nếu \(x^4=3^4\Rightarrow x=\pm3\Rightarrow\left(y-18\right)^2=2^2\)

\(\Leftrightarrow\orbr{\begin{cases}y-18=2\\y-18=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}y=20\\y=16\end{cases}}}\)( nhận ) 

P/s nhận cả hai nhé

Bình luận (0)
HN
Xem chi tiết
AS
1 tháng 11 2018 lúc 21:28

\(5x^4+y^2-4x^2y+y^2-85=0\)

\(\Leftrightarrow4x^4+y^2-4x^2y=85-x^4\)(*)

\(\Leftrightarrow\left(2x^2-y\right)^2=85-x^4\)

ta thấy: \(\left(2x^2-y\right)^2\ge0\)

nên : \(85-x^4\ge0\Leftrightarrow0\le x^4\le85\)

\(\Leftrightarrow x^4\in\left\{1;16;81\right\}\) \(\Leftrightarrow x\in\left\{\pm1;\pm2;\pm3\right\}\)

Thay từng giá trị x vào (*) , tìm y

Bình luận (0)
H24
1 tháng 11 2018 lúc 21:33

5x4 + y2 - 4x2y - 85 = 0

<=> (4x2 - 4x2y + y2) + x4 = 85

<=> (2x2 - y)2 + x4 = 85

Lại có: 85 = 4 + 81

\(\Rightarrow\left\{{}\begin{matrix}x^4=81\\\left(2x^2-y\right)^2=4\end{matrix}\right.\)

Tự giải nốt

Bình luận (0)
LN
Xem chi tiết
AN
25 tháng 10 2016 lúc 18:35

5x4 - 4x2y + y2 - 85 = 0

<=> (2x2 - y)2 + x4 = 85

Từ đây ta có x4 \(\le85\)

<=> \(0\le x^2\le9\)

Kết hợp với việc 85 phải là tổng của 2 bình phương ta suy ra

\(\hept{\begin{cases}\left(2x^2-y\right)^2=4\\x^4=81\end{cases}}\)

Giải tiếp suy ra nghiệm nguyên cần tìm

Bình luận (0)
ND
Xem chi tiết
BM
Xem chi tiết
AK
13 tháng 1 2019 lúc 11:57

Pt đã cho đưa về dạng

(2x+y)^2 + 2(2x+y) + 1 + x^2 - 4 = 0

<=> (2x+y+1)^2 + x^2 = 4

Mà 4 = 0 + 2^2 = 0 + (-2)^2

Xét các TH là ra 

Bình luận (0)
OK
13 tháng 1 2019 lúc 12:38

(2x+y)^2 + 2(2x+y) + 1 + x^2 - 4 = 0

<=> (2x+y+1)^2 + x^2 = 4

Mà 4 = 0 + 2^2 = 0 + (-2)^2

Xét các TH là ra 

Bình luận (0)
H24
Xem chi tiết
NL
18 tháng 4 2021 lúc 22:42

\(\Leftrightarrow5\left(x^4+2x^2+1\right)+2\left(y^6+2y^3+1\right)=13\)

\(\Leftrightarrow5\left(x^2+1\right)^2+2\left(y^3+1\right)^2=13\)

\(\Leftrightarrow\left(x^2+1\right)^2=\dfrac{13-2\left(y^3+1\right)^2}{5}\le\dfrac{13}{5}< 4\)

\(\Rightarrow x^2+1< 2\Rightarrow x^2< 1\)

\(\Leftrightarrow x=0\)

\(\Rightarrow y^6+2y^3-3=0\Rightarrow\left[{}\begin{matrix}y^3=1\Rightarrow y=1\\y^3=-3\left(ktm\right)\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(0;1\right)\)

Bình luận (2)