Tìm GTNN A=\(\sqrt{2x^2-2x+5}+\sqrt{2x^2-4x+4}\)
Tìm GTNN của biểu thức A=\(\sqrt{2x^2-2x+5}+\sqrt{2x^2-4x+4}\)
\(\sqrt{2}A=\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}\)
\(\sqrt{2}A=\sqrt{\left(2x-1\right)^2+3^2}+\sqrt{\left(2-2x\right)^2+2^2}\)
Áp dụng BĐT \(\sqrt{A^2+B^2}+\sqrt{C^2+D^2}\ge\sqrt{\left(A+C\right)^2+\left(B+D\right)^2}\)
=>\(\sqrt{2}A\ge\sqrt{\left(2x-1+2-2x\right)^2+\left(3+2\right)^2}=\sqrt{26}\)
=>\(A\ge\sqrt{13}\)
Dấu bằng xảy ra<=> \(\frac{2x-1}{3}=\frac{2x-2}{2}\)
<=>.........
Bài 1 : Giai phương trình sau :
\(\sqrt{2x-2+2\sqrt{2x-3}}\) + \(\sqrt{2x+13+8\sqrt{2x-3}}=5\)
Bài 2 : Tìm GTNN của biểu thức sau :
A = \(\sqrt{4X^2-4X+1}+\sqrt{4X^2-12X+9}\)
\(2x+5=6\sqrt{2x-4}\)
Giải pt
\(Q=\sqrt{x^2-4x+4}+\sqrt{x^2+4x+4}\)
Rút gọn Q
Tìm GTNN của Q
\(Q=\sqrt{x^2-4x+4}+\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}+\sqrt{\left(2-x\right)^2}\)
\(\Leftrightarrow\left|x+2\right|+\left|2-x\right|\ge\left|x+2+2-x\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+2\right)\left(2-x\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2\ge0\\2-x\ge0\end{cases}}\) hoặc \(\orbr{\begin{cases}x+2\le0\\2-x\le0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\ge-2\\x\le2\end{cases}}\) hoặc \(\orbr{\begin{cases}x\le-2\\x\ge2\end{cases}}\left(vo-ly\right)\)
Vậy minQ = 4 \(\Leftrightarrow-2\le x\le2\)
Bài 1 :
ĐKXĐ : \(x\ge2\)
\(2x+5=6\sqrt{2x-4}\)
\(\Leftrightarrow4x^2+20x+25=36\left(2x-4\right)\)
\(\Leftrightarrow4x^2+20x+25-72x+144=0\)
\(\Leftrightarrow4x^2-52x+159=0\)
Đến đây chịu :))
Đến đấy thì tính delta tiếp thôi mừ :>)
tìm GTNN của biểu thức
\(\sqrt{x^2-2x+10}+\sqrt{x^2+4x+5}\)
tìm GTNN của biểu thức
\(\sqrt{x^2-2x+10}+\sqrt{x^2+4x+5}\)
Ta có: \(\sqrt{x^2-2x+10}=\sqrt{x^2-2x+1+9}=\sqrt{\left(x-1\right)^2+9}\ge\sqrt{9}\ge3\)
\(\sqrt{x^2+4x+5}=\sqrt{x^2+4x+4+1}=\sqrt{\left(x+2\right)^2+1}\ge\sqrt{1}\ge1\)
\(\Rightarrow\) \(\sqrt{x^2-2x+10}+\sqrt{x^2+4x+5}\ge1+3\ge4\)
Vậy GTNN của biểu thức là 4
Tìm GTLN,GTNN :
a) \(A=2x-6\sqrt{x}-1\)
b) \(C=\frac{1}{-2x+4\sqrt{x}+3}\)
c) \(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
d) \(F=\sqrt{2x-7}+\sqrt{5-2x}\)
e) \(A=-3x+6\sqrt{x}+3\)
h) \(E=\sqrt{2x+1}-\sqrt{2x-8}\)
i) \(F=\sqrt{3x-2}+\sqrt{5-3x}\)
mình cần gấp hôm nay ạ, giúp mình với ạ
\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=2x-1+2x-3\)
\(=4x-4\)
Làm nốt
TÌM GTNN
a)\(\sqrt{x^2+2x+5}\)
b) \(\sqrt{4x^2+4x+1}+\sqrt{4x^2+2x+9}\)
tìm x:
\(\sqrt{x^2+x+1}=1\)
\(\sqrt{x^2+1}=-3\)
\(\sqrt{x^2-10x+25}=7-2x\)
\(\sqrt{2x+5}=5\)
\(\sqrt{x^2-4x+4}-2x+5=0\)
√(x² + x + 1) = 1
⇔ x² + x + 1 = 1
⇔ x² + x = 0
⇔ x(x + 1) = 0
⇔ x = 0 hoặc x + 1 = 0
*) x + 1 = 0
⇔ x = -1
Vậy x = 0; x = -1
--------------------
√(x² + 1) = -3
Do x² ≥ 0 với mọi x
⇒ x² + 1 > 0 với mọi x
⇒ x² + 1 = -3 là vô lý
Vậy không tìm được x thỏa mãn yêu cầu
--------------------
√(x² - 10x + 25) = 7 - 2x
⇔ √(x - 5)² = 7 - 2x
⇔ |x - 5| = 7 - 2x (1)
*) Với x ≥ 5, ta có
(1) ⇔ x - 5 = 7 - 2x
⇔ x + 2x = 7 + 5
⇔ 3x = 12
⇔ x = 4 (loại)
*) Với x < 5, ta có:
(1) ⇔ 5 - x = 7 - 2x
⇔ -x + 2x = 7 - 5
⇔ x = 2 (nhận)
Vậy x = 2
--------------------
√(2x + 5) = 5
⇔ 2x + 5 = 25
⇔ 2x = 20
⇔ x = 20 : 2
⇔ x = 10
Vậy x = 10
-------------------
√(x² - 4x + 4) - 2x +5 = 0
⇔ √(x - 2)² - 2x + 5 = 0
⇔ |x - 2| - 2x + 5 = 0 (2)
*) Với x ≥ 2, ta có:
(2) ⇔ x - 2 - 2x + 5 = 0
⇔ -x + 3 = 0
⇔ x = 3 (nhận)
*) Với x < 2, ta có:
(2) ⇔ 2 - x - 2x + 5 = 0
⇔ -3x + 7 = 0
⇔ 3x = 7
⇔ x = 7/3 (loại)
Vậy x = 3
1)
\(\Leftrightarrow x^2+x+1=1^2=1\\ \Leftrightarrow x^2+x=0\\ \Leftrightarrow x\left(x+1\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
2) Do \(x^2+1>0\forall x\) nên \(x\in\varnothing\)
3)
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=7-2x\\ \Leftrightarrow\left|x-5\right|=7-2x\)
Nếu \(x\ge5\) thì
\(\Leftrightarrow x-5-7+2x=0\\ \Leftrightarrow3x-12=0\\ \Leftrightarrow3x=12\\ \Rightarrow x=4\)
=> Loại trường hợp này
Nếu \(x< 5\) thì
\(\Leftrightarrow5-x-7+2x=0\\ \Leftrightarrow x-2=0\\ \Rightarrow x=2\)
=> Nhận trường hợp này
Vậy x = 2
4)
\(\Leftrightarrow2x+5=5^2=25\\ \Leftrightarrow2x=25-5=20\\ \Rightarrow x=\dfrac{20}{2}=10\)
5)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}-2x+5=0\\ \Leftrightarrow\left|x-2\right|-2x+5=0\)
Nếu \(x\ge2\) thì
\(\Leftrightarrow x-2-2x+5=0\\ \Leftrightarrow3-x=0\\ \Rightarrow x=3\)
=> Nhận trường hợp này
Nếu \(x< 2\) thì
\(\Leftrightarrow2-x-2x+5=0\\ \Leftrightarrow7-3x=0\\ \Leftrightarrow3x=7\\ \Rightarrow x=\dfrac{7}{3}\)
=> Loại trường hợp này
Vậy x = 3
Giải phương trình:(Nhớ tìm điều kiện)
a) \(\sqrt{2x-1}=\sqrt{5}\)
b)\(\sqrt{x-5}\) = 3
c)\(\sqrt{4x^2+4x+1}=6\)
d)\(\sqrt{\left(x-3\right)^2}=3-x\)
e)\(\sqrt{2x+5}=\sqrt{1-x}\)
f)\(\sqrt{x^2-x}=\sqrt{3-x}\)
g)\(\sqrt{2x^2-3}=\sqrt{4x-3}\)
h)\(\sqrt{2x-5}=\sqrt{x-3}\)
i)\(\sqrt{x^2-x+6}=\sqrt{x^2+3}\)
a, ĐKXĐ : \(x\ge\dfrac{1}{2}\)
PT <=> 2x - 1 = 5
<=> x = 3 ( TM )
Vậy ...
b, ĐKXĐ : \(x\ge5\)
PT <=> x - 5 = 9
<=> x = 14 ( TM )
Vậy ...
c, PT <=> \(\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
Vậy ...
d, PT<=> \(\left|x-3\right|=3-x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=x-3\\x-3=3-x\end{matrix}\right.\)
Vậy phương trình có vô số nghiệm với mọi x \(x\le3\)
e, ĐKXĐ : \(-\dfrac{5}{2}\le x\le1\)
PT <=> 2x + 5 = 1 - x
<=> 3x = -4
<=> \(x=-\dfrac{4}{3}\left(TM\right)\)
Vậy ...
f ĐKXĐ : \(\left[{}\begin{matrix}x\le0\\1\le x\le3\end{matrix}\right.\)
PT <=> \(x^2-x=3-x\)
\(\Leftrightarrow x=\pm\sqrt{3}\) ( TM )
Vậy ...
a) \(\sqrt{2x-1}=\sqrt{5}\) (x \(\ge\dfrac{1}{2}\))
<=> 2x - 1 = 5
<=> x = 3 (tmđk)
Vậy S = \(\left\{3\right\}\)
b) \(\sqrt{x-5}=3\) (x\(\ge5\))
<=> x - 5 = 9
<=> x = 4 (ko tmđk)
Vậy x \(\in\varnothing\)
c) \(\sqrt{4x^2+4x+1}=6\) (x \(\in R\))
<=> \(\sqrt{\left(2x+1\right)^2}=6\)
<=> |2x + 1| = 6
<=> \(\left[{}\begin{matrix}\text{2x + 1=6}\\\text{2x + 1}=-6\end{matrix}\right.< =>\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-7}{2}\end{matrix}\right.\)(tmđk)
Vậy S = \(\left\{\dfrac{5}{2};\dfrac{-7}{2}\right\}\)