Giải phương trình:
\(x^3+3x^2+11x-9=\left(11-x\right).\left(\sqrt{3-x}\right)\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Giải phương trình
\(x^3+3x^2+11x-9=\left(11-x\right)\sqrt{3-x}\)
Giải các phương trình sau:
a \(x^2-11=0\)
b \(x^2-12x+52=0\)
c \(x^2-3x-28=0\)
d \(x^2-11x+38=0\)
e \(6x^2+71x+175=0\)
f \(x^2-\left(\sqrt{2}+\sqrt{8}\right)x+4=0\)
g\(\left(1+\sqrt{3}\right)x^2-\left(2\sqrt{3}+1\right)x+\sqrt{3}=0\)
a.
$x^2-11=0$
$\Leftrightarrow x^2=11$
$\Leftrightarrow x=\pm \sqrt{11}$
b. $x^2-12x+52=0$
$\Leftrightarrow (x^2-12x+36)+16=0$
$\Leftrightarrow (x-6)^2=-16< 0$ (vô lý)
Vậy pt vô nghiệm.
c.
$x^2-3x-28=0$
$\Leftrightarrow x^2+4x-7x-28=0$
$\Leftrightarrow x(x+4)-7(x+4)=0$
$\Leftrightarrow (x+4)(x-7)=0$
$\Leftrightarrow x+4=0$ hoặc $x-7=0$
$\Leftrightarrow x=-4$ hoặc $x=7$
d.
$x^2-11x+38=0$
$\Leftrightarrow (x^2-11x+5,5^2)+7,75=0$
$\Leftrightarrow (x-5,5)^2=-7,75< 0$ (vô lý)
Vậy pt vô nghiệm
e.
$6x^2+71x+175=0$
$\Leftrightarrow 6x^2+21x+50x+175=0$
$\Leftrightarrow 3x(2x+7)+25(2x+7)=0$
$\Leftrightarrow (3x+25)(2x+7)=0$
$\Leftrightarrow 3x+25=0$ hoặc $2x+7=0$
$\Leftrightarrow x=-\frac{25}{3}$ hoặc $x=-\frac{7}{2}$
f.
$x^2-(\sqrt{2}+\sqrt{8})x+4=0$
$\Leftrightarrow x^2-\sqrt{2}x-2\sqrt{2}x+4=0$
$\Leftrightarrow x(x-\sqrt{2})-2\sqrt{2}(x-\sqrt{2})=0$
$\Leftrightarrow (x-\sqrt{2})(x-2\sqrt{2})=0$
$\Leftrightarrow x-\sqrt{2}=0$ hoặc $x-2\sqrt{2}=0$
$\Leftrightarrow x=\sqrt{2}$ hoặc $x=2\sqrt{2}$
g.
$(1+\sqrt{3})x^2-(2\sqrt{3}+1)x+\sqrt{3}=0$
$\Leftrightarrow (1+\sqrt{3})x^2-(1+\sqrt{3})x-(\sqrt{3}x-\sqrt{3})=0$
$\Leftrightarrow (1+\sqrt{3})x(x-1)-\sqrt{3}(x-1)=0$
$\Leftrightarrow (x-1)[(1+\sqrt{3})x-\sqrt{3}]=0$
$\Leftrightarrow x-1=0$ hoặc $(1+\sqrt{3})x-\sqrt{3}=0$
$\Leftrightarrow x=1$ hoặc $x=\frac{3-\sqrt{3}}{2}$
giải phương trình :
a, \(\sqrt{x+1}+x+3=\sqrt{1-x}+3\sqrt{1-x^2}\)
b,\(\left(2x-3\right)\sqrt{3+x}+2x\sqrt{3-x}=6x-8+\sqrt{9-x^2}\)
c, \(2x^2-5x+22=5\sqrt{x^3-11x +20}\)
d, \(x^3-3x^2+2\sqrt{\left(x+2\right)^3}=6x\)
giải phương trình :
a, \(2x^2-11x+21-3\sqrt[3]{4x-4}=0\)
b, \(\left(3x-2\right)\sqrt{x+1}-x^2-x-2=0\)
c, \(x+4-2\left(\dfrac{x+2}{x-1}\right)\sqrt{\dfrac{x-1}{x+2}}=0\)
c.
ĐKXĐ: \(\left[{}\begin{matrix}x>1\\x< -2\end{matrix}\right.\)
\(\Leftrightarrow x+4-2\sqrt[]{\left(\dfrac{x+2}{x-1}\right)^2\left(\dfrac{x-1}{x+2}\right)}=0\)
\(\Leftrightarrow x+4-2\sqrt[]{\dfrac{x+2}{x-1}}=0\)
\(\Leftrightarrow x+4=2\sqrt[]{\dfrac{x+2}{x-1}}\) (\(x\ge-4\))
\(\Leftrightarrow x^2+8x+16=\dfrac{4\left(x+2\right)}{x-1}\)
\(\Rightarrow x^3+7x^2+4x-24=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+4x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2+2\sqrt{3}\\x=-2-2\sqrt{3}\left(loại\right)\end{matrix}\right.\)
a.
\(\Leftrightarrow2x^2-11x+21=3\sqrt[3]{4\left(x-1\right)}\)
Do \(2x^2-11x+21=2\left(x-\dfrac{11}{4}\right)^2+\dfrac{47}{8}>0\Rightarrow3\sqrt[3]{4\left(x-1\right)}>0\Rightarrow x-1>0\)
Ta có:
\(VT=2x^2-11x+21-3\sqrt[3]{4x-4}=2\left(x^2-6x+9\right)+x+3-3\sqrt[3]{4\left(x-1\right)}\)
\(=2\left(x-3\right)^2+x+3-3\sqrt[3]{4\left(x-1\right)}\)
\(\Rightarrow VT\ge x+3-3\sqrt[3]{4\left(x-1\right)}=\left(x-1\right)+2+2-3\sqrt[3]{4\left(x-1\right)}\)
\(\Rightarrow VT\ge3\sqrt[3]{\left(x-1\right).2.2}-3\sqrt[3]{4\left(x-1\right)}=0\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\x-1=2\\\end{matrix}\right.\) \(\Leftrightarrow x=3\)
Vậy pt có nghiệm duy nhất \(x=3\)
b.
ĐKXD: \(x\ge-1\)
Phương trình: \(2\left(x+1\right)-\left(3x-2\right)\sqrt[]{x+1}+x^2-x=0\)
Đặt \(\sqrt[]{x+1}=t\ge0\)
\(\Rightarrow2t^2-\left(3x-2\right)t+x^2-x=0\)
\(\Delta=\left(3x-2\right)^2-8\left(x^2-x\right)=\left(x-2\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{3x-2+x-2}{4}=x-1\\t=\dfrac{3x-2-x+2}{4}=\dfrac{x}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt[]{x+1}=x-1\left(x\ge1\right)\\\sqrt[]{x+1}=\dfrac{x}{2}\left(x\ge0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=x^2-2x+1\left(x\ge1\right)\\x+1=\dfrac{x^2}{4}\left(x\ge0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2+2\sqrt[]{2}\end{matrix}\right.\)
Giải các bất phương trình sau:
a/ \(\sqrt{\left(x-3\right)\left(8-x\right)}+26>-x^2+11x\)
b/ \(\left(x+1\right)\left(x+4\right)< 5\sqrt{x^2+5x+28}\)
GIÚP MÌNH VỚI Ạ!!!
giải phương trình
\(3x^2+11x+\sqrt{x-2}+\sqrt{2x+3}=14x\left(x\ge2\right)\)
giải phương trình \( \sqrt{ - { x }^{ 2 } +6x-9 \phantom{\tiny{!}}} + { x }^{ 3 } = 27 \)
\(\sqrt{ { \left( x-3 \right) }^{ 2 } \left( 5-3x \right) \phantom{\tiny{!}}} +2x= \sqrt{ 3x-5+4 \phantom{\tiny{!}}} \)
Giải phương trình, x>0
\(\frac{\left(x^3+3x^2\sqrt{x^3-3x+6}\right)\left(3x-x^3-2\right)}{2+\sqrt{x^3-3x+6}}=4\left[2\sqrt{\left(x^3-3x+6\right)^3}-\left(x^3-3x+6\right)^2\right]\)
bài này chắc đặt \(\sqrt{x^3-3x+6}\)cho nó gọn thôi
Giải phương trình, x>0
\(\frac{\left(x^3+3x^2\sqrt{x^3-3x+6}\right)\left(3x-x^3-2\right)}{2+\sqrt{x^3-3x+6}}=4\left[2\sqrt{\left(x^3-3x+6\right)^3}-\left(x^3-3x+6\right)^2\right]\)