Tìm số nguyên dương x biết
\(2.2^2.2^3.....2^x=1024\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(2.2^2.2^3..........2^x=1024\)
\(2^{1+2+3+...+x}=2014\)
\(1+2+3+...+x=10\)
x=4
Tìm số nguyên dương x
2.22.23.24..............2x=(23)12
\(2\times2^2\times2^3\times2^4\times...\times2^x=\left(2^3\right)^{12}\)
\(\Leftrightarrow2^{1+2+3+4+...+x}=2^{3\times12}\)
\(\Leftrightarrow2^{1+2+3+4+...+x}=2^{36}\)
\(\Leftrightarrow1+2+3+4+...+x=36\)
Ta có : Số số hạng = \(\frac{x-1}{1}+1=x\)
Tổng = \(\frac{\left(x+1\right)\times x}{2}=36\)
\(\Leftrightarrow\left(x+1\right)\times x=72\)
\(\Leftrightarrow x^2+x-72=0\)
\(\Leftrightarrow x^2-8x+9x-72=0\)
\(\Leftrightarrow x\times\left(x-8\right)+9\times\left(x-8\right)=0\)
\(\Leftrightarrow\left(x-8\right)\times\left(x+9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-8=0\\x+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-9\end{cases}}\)
=> x = 8 ( do x là số nguyên dương )
Tìm số nguyên x, biết:
2.22.23.24 ... .2x = 1024
* Trả lời:
Ta có: \(1024=2^{10}\)
Lại có: \(2.2^2.2^3.2^4=2^{10}\)
\(\Rightarrow2^x=1\)
\(\Leftrightarrow x=0\) ( vì số nào mũ 0 cũng bằng 1)
Tìm số tự nhiên n biết :
2.22.23......2n=1024
2.22.23....2n = 1024
2.22.23....2n = 210
=> 1+2+3+...+n = 10
(n+1).n : 2 = 10
(n+1).n = 10.2
(n+1).n = 20
(n+1).n = 5.4
=> n = 4
Ta có: \(2.2^2.2^3.....2^n=1024\)
\(\Rightarrow2.2^2.2^3......2^n=2^{10}\)
\(\Rightarrow1+2+3+...+n=10\)
\(\Rightarrow n=4\)
Tìm x biết
2.2^2.2^3.2^4...2^x=1024
Mình giải không ra mong mọi người giúp đỡ
2.2^2.2^3.2^4......2^x = 1024
2^(1+2+...+x) = 2^10
=> 1+2 + 3+...+ x = 10
=>x.(1+x):2 = 10
=>x.(1+x) = 20
=> x = 4 (vì 4.5 =20)
Đúng cái gì cơ
Tìm số nguyên x , nếu biết
1. 7.4^x=7.4^3
2.3/2.5^x =3/2.5^12
3 . 2^x=2.2^8
4. 5.3^x=7.3^5-2.3^5
1) \(7.4^x=7.4^3\Leftrightarrow4^x=4^3;x=3\)
2) \(\frac{3}{2.5^x}=\frac{3}{2.5^{12}}\Leftrightarrow5^x=5^{12};x=12\)
\(2^x=2.2^8=2^9;x=9\)
4) \(5.3^x=7.3^5-2.3^5\Leftrightarrow5.3^x=3^5.\left(7-2\right)\)
\(\Leftrightarrow3^5.x=3^5.5;x=5\)
Tìm các cặp số nguyên x; y biết :
x^2.2.y-x^2-2y-2 =0
1 Tìm x:
a) \(2.2^2.2^3...2^x=1024\) b) \(\frac{37-x}{x+13}=\frac{3}{7}\)
2. Tính :
\(\frac{1}{2}\sqrt{64}-\sqrt{\frac{4}{25}}+\left(\frac{50^2-15.125}{5^4}\right)^{2014}\)
Bài 1 )
a ) \(2.2^2.2^3.....2^x=1024\Leftrightarrow2^{1+2+....+x}=2^{10}\Leftrightarrow1+2+....+x=10\)
\(\Leftrightarrow\frac{x\left(x+1\right)}{2}=10\Leftrightarrow\left(x+1\right)x=20=4.5\Rightarrow x=4\)
b ) \(\frac{37-x}{x+13}=\frac{3}{7}\Leftrightarrow3x+39=259-7x\Leftrightarrow3x+7x=259-39\Leftrightarrow10x=220\Rightarrow x=22\)
Bài 2 ) \(\frac{1}{2}\sqrt{64}-\sqrt{\frac{4}{25}}+\left(\frac{50^2-15.125}{5^4}\right)^{2014}=\frac{1}{2}.8-\frac{2}{5}+\left(\frac{5^4.2^2-3.5^4}{5^4}\right)^{2014}\)
\(=4-\frac{2}{5}+\left[\frac{5^4\left(4-3\right)}{5^4}\right]^{2014}=\frac{18}{5}+1=\frac{23}{5}\)
Mình làm bài 1 thui nha, còn bài 2 thì còn tự tính là được thôi mừ !!!
Bài 1:
a) \(2.2^2.2^3...2^x=1024\)
\(=>2^{1+2+3+...+x}=2^{10}\)
\(< =>1+2+3+...+x=10\)
\(=>6+x=10\)
\(=>x=10-6\)
\(=>x=4.\)
Nếu đúng thì k cho mình nhá
a)\(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}=\frac{x+1}{5}+\)\(\frac{x+1}{6}\)
b)\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\)\(\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
c)\(2.2^2.2^3.2^4.........2^x=1024\)\(\left(x\in z\right)\)
Tìm x
b./ \(\Leftrightarrow\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1.\)
\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)(b)
Mà \(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}< 0\)
(b) \(\Leftrightarrow x+2010=0\Leftrightarrow x=-2010\)
a./
\(\Leftrightarrow\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}-\frac{x+1}{5}-\frac{x+1}{6}=0.\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)=0\)(a)
Mà \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}>0\)
(a) \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
c./ \(\Leftrightarrow2\cdot2^2\cdot2^3\cdot...\cdot2^x=2^{10}\Leftrightarrow2^{1+2+3+...+x}=2^{10}\Leftrightarrow1+2+3+...+x=10\)
\(\Leftrightarrow\frac{x\left(x+1\right)}{2}=10\Leftrightarrow x\left(x+1\right)=20=4\cdot5\Rightarrow x=4\)