Những câu hỏi liên quan
DT
Xem chi tiết
TC
Xem chi tiết
TT
Xem chi tiết
TA
Xem chi tiết
TN
Xem chi tiết
AN
19 tháng 8 2016 lúc 10:28

Theo mình đoán là phương trình này vô nghiệm. Nhưng mình không chứng minh được điều này :((

Bình luận (0)
H24
19 tháng 8 2016 lúc 10:39

có nghiệm đấy bác : ))

Bình luận (0)
AN
19 tháng 8 2016 lúc 10:42
Nghiệm bằng mấy bác
Bình luận (0)
VT
Xem chi tiết
H24
23 tháng 11 2015 lúc 20:21

tui giải khác không biết phải không =]]

=>4 \(\left(\sqrt{x+1}\right)^2\)-  4 \(\left(\sqrt{1-x}\right)^2\)+(3 - x) = 3\(\left(\sqrt{1-x}\right)^2\)

= >4(x+1) -4(1-x) + (3-x) = 3(1-x)

=>4x +4 -4 +4x +3 -x = 3 - 3x

=>10x = 0

=> x=0 => pt VN

Bình luận (0)
BL
Xem chi tiết
VH
1 tháng 7 2019 lúc 16:34

b) Nhẩm thấy \(x=-2\) là nghiệm, ta xét trường hợp:

* Với \(x>-2\) thì

\(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}>-1+0+1=0=VP\)

* Với \(x< -2\) thì

\(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}< -1+0+1=0=VP\)

Do đó pt có nghiệm duy nhất \(x=-2\)

Bình luận (0)
H24
1 tháng 7 2019 lúc 17:02

c) Đặt \(\sqrt[4]{1-x}=a;\sqrt[4]{1+x}=b\)

\(\Rightarrow a^4+b^4=2\)

Theo đề bài \(a+b+ab=3\Rightarrow a+b=3-ab\)

Cần giải cái hệ (đợi một xíu em ăn xong em làm tiếp hoặc là nếu bận thì thứ 6 tuần này em làm):v \(\left\{{}\begin{matrix}a^4+b^4=3\\a+b=3-ab\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a^2+b^2\right)^2=3+2a^2b^2\\ab=3-a-b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[\left(a+b\right)^2-2ab\right]^2=3+2\left(3-a-b\right)^2\\ab=3-a-b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[\left(a+b\right)^2-2\left(3-a-b\right)\right]^2=3+2\left(3-a-b\right)^2\\ab=3-a-b\end{matrix}\right.\)

Bình luận (8)
BL
1 tháng 7 2019 lúc 16:10

tth, Hoàng Tử Hà, Bonking, Akai Haruma, @Nguyễn Việt Lâm

Quoc Tran Anh Le

giúp mk vs!

mk cảm ơn nhiều!

Bình luận (0)
NT
Xem chi tiết
VT
Xem chi tiết