Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1. Phân tích ra thừa số
a.\(\sqrt{ab}-\sqrt{ac}+\sqrt{bc}+b\)
b.x-y-3(\(\sqrt{x}-\sqrt{y}\))
c. \(\sqrt{x^2-y^2}\)-x+y
2. GPT
a.\(\sqrt{\sqrt{5}-\sqrt{3}x}\)=\(\sqrt{8+2\sqrt{15}}\)
b.\(\sqrt{2+\sqrt{3+\sqrt{x}}}=3\)
Gpt :
1) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
2) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+s}+\sqrt{x+1}=16\)
3)\(\sqrt{4x+20}+\sqrt{x+5}-\frac{1}{3}\sqrt{9x+45}=4\)
4) \(\frac{1}{3}\sqrt{2x}-\sqrt{8x}+\sqrt{18x}-10=2\)
GPT a) \(\sqrt{x+2-3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
b) \(\sqrt{x}+\sqrt{y-z}+\sqrt{z-x}=\dfrac{1}{2}\left(y+3\right)\)
Giải phương trình
a, \(\sqrt{x-1+4\sqrt{x-5}}+\sqrt{11+x+8\sqrt{x-5}}=0\)
b, \(\sqrt{x+2-3\sqrt{2x-5}}+\sqrt{x-2+\sqrt{2x-5}}=\sqrt{8}\)
c. \(\sqrt[3]{\left(65+x\right)^2}+4\sqrt[3]{\left(65-x\right)^2}=5\sqrt[3]{65^2-x^2}\)
d, \(\sqrt{\dfrac{x^2+x+1}{x}}+\sqrt{\dfrac{x}{x^2+x+1}}=\dfrac{7}{4}\)
1/ Thu gọn các biểu thức:
A=\(\sqrt{\dfrac{3\sqrt{3}-4}{2\sqrt{3}+1}}-\sqrt{\dfrac{\sqrt{3}+4}{5-2\sqrt{3}}}\)
B=\(\dfrac{x\sqrt{x}-2x+28}{x-3\sqrt{x}-4}-\dfrac{\sqrt{x}-4}{\sqrt{x}+1}+\dfrac{\sqrt{x}+8}{4-\sqrt{x}}\)
1)
2)
3)
4)
5)
Gpt:
a.\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
b. \(\sqrt{4x+1}-\sqrt{3x-2}=\dfrac{x+3}{5}\)
c.\(\sqrt{x^2-3x+2}-\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
1) \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\)
2)\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)
Chứng minh biểu thức không phụ thuộc vào x
\(K=\sqrt{x}+\dfrac{\sqrt[3]{2-\sqrt{3}}\cdot\sqrt[6]{7+4\sqrt{3}}-x}{\sqrt[4]{9-4\sqrt{5}}\cdot\sqrt{2+\sqrt{5}}+\sqrt{x}}\)