Những câu hỏi liên quan
CQ
Xem chi tiết
NT
Xem chi tiết
DD
Xem chi tiết
NH
1 tháng 11 2019 lúc 16:49

a, Để A có giá trị âm => 2x - 8 < 0 => 2x < 8 => x < 4

b, Để B có giá trị không dương => 6 - x < 0 => x > 6

c, Để C có giá trị âm:

Th1: \(\hept{\begin{cases}x-2>0\\2x+6< 0\end{cases}\Rightarrow}\hept{\begin{cases}x>2\\2x< -6\end{cases}\Rightarrow}\hept{\begin{cases}x>2\\x< -3\end{cases}}\)  (vô lý)

Th2: \(\hept{\begin{cases}x-2< 0\\2x+6>0\end{cases}\Rightarrow}\hept{\begin{cases}x< 2\\2x>-6\end{cases}\Rightarrow}\hept{\begin{cases}x< 2\\x>-3\end{cases}\Rightarrow}-3< x< 2\)

d, Ta có: 3x2 + 9x = 3x(x + 3)

Để D có giá trị dương:

Th1: \(\hept{\begin{cases}3x>0\\x+3>0\end{cases}}\Rightarrow\hept{\begin{cases}x>0\\x>-3\end{cases}}\Rightarrow x>0\) 

Th2: \(\hept{\begin{cases}3x< 0\\x+3< 0\end{cases}\Rightarrow}\hept{\begin{cases}x< 0\\x< -3\end{cases}\Rightarrow}x< -3\)

e, Đk: x ≠ 0

Để E có giá trị âm 

Th1: \(\hept{\begin{cases}x-2>0\\x< 0\end{cases}\Rightarrow}\hept{\begin{cases}x>2\\x< 0\end{cases}}\)(vô lý)

Th2: \(\hept{\begin{cases}x-2< 0\\x>0\end{cases}\Rightarrow}\hept{\begin{cases}x< 2\\x>0\end{cases}\Rightarrow}0< x< 2\)

f, Để F mang giá trị dương:

Th1: \(\hept{\begin{cases}2x-5>0\\x-4>0\end{cases}\Rightarrow}\hept{\begin{cases}2x>5\\x>4\end{cases}}\Rightarrow\hept{\begin{cases}x>\frac{5}{2}=2,5\\x>4\end{cases}\Rightarrow}x>4\)

Th2: \(\hept{\begin{cases}2x-5< 0\\x-4< 0\end{cases}\Rightarrow}\hept{\begin{cases}2x< 5\\x< 4\end{cases}}\Rightarrow\hept{\begin{cases}x< \frac{5}{2}=2,5\\x< 4\end{cases}\Rightarrow}x< 2,5\)

g, Để G có giá trị không âm

Th1: \(\hept{\begin{cases}x+1>0\\3-x>0\end{cases}}\Rightarrow\hept{\begin{cases}x>-1\\x< 3\end{cases}}\Rightarrow-1< x< 3\)

Th2: \(\hept{\begin{cases}x+1< 0\\3-x< 0\end{cases}\Rightarrow}\hept{\begin{cases}x< -1\\x>3\end{cases}}\)(vô lý)

Bình luận (0)
 Khách vãng lai đã xóa
PV
Xem chi tiết
NM
19 tháng 12 2016 lúc 18:01

ldigh;df

Bình luận (0)
NN
Xem chi tiết
GT
27 tháng 10 2016 lúc 22:17

ta sử dung bất đẳng thức IaI+IbI lớn hơn hoặc bằng Ia+bI

dấu bằng xảy ra khi và chỉ khi tích ab lớn hơn hoặc bằng 0

áp dung vào ta có:   Ix-2015I+Ix-2016I=Ix-2015I+I2016-xI \(\ge\) Ix-2015+2016-xI=I1I=1

dấu bằng xảy ra khi và chỉ khi (x-2015)(2016-x) lờn hơn hoặc bằng 0

hay \(2015\le x\le2016\)

vậy giá trị nhỏ nhất của biểu thức là 1. dấu bằng xảy ra khi và chỉ khi \(2015\le x\le2016\)

Bình luận (0)
NP
Xem chi tiết
ND
22 tháng 12 2017 lúc 15:24

Đặt \(A=\dfrac{x^2-10x+25}{x^2-5}\)

ĐK : \(x^2-5\ne0\\ \Leftrightarrow\left\{{}\begin{matrix}x\ne\sqrt{5}\\x\ne-\sqrt{5}\end{matrix}\right.\)

\(A=0\\ \Leftrightarrow\dfrac{x^2-10x+25}{x^2-5}=0\\ \Leftrightarrow x^2-10x+25=0\\ \Leftrightarrow\left(x-5\right)^2=0\\ \Leftrightarrow x=5\left(TM\right)\)

Vậy x =5 thì A =0

Bình luận (0)
NQ
Xem chi tiết
DL
16 tháng 12 2015 lúc 21:34

Vì |x-3| luôn lớn bằng 0 với mọi x

=> |x - 3| + (-100) luôn lớn bằng -100 với mọi x

=> A luôn lớn bằng 100

Dấu "=" xảy ra <=> |x-3| = 0

=> x - 3 = 0

=> x = 3

Vậy Min A = -100 <=> x = 3

Bình luận (0)
DV
16 tháng 12 2015 lúc 21:34

Ta có |x - 3| > 0

=> |x - 3| + (-100) > - 100

hay A > 100

Vậy GTNN của A là 100 <=> |x - 3| = 0 <=> x - 3 = 0 <=> x = 3

Bình luận (0)
LD
Xem chi tiết
DL
Xem chi tiết
NN
Xem chi tiết