Cho biểu thức M=(a^2-2a+2011)/a^2
Hãy tìm giá trị của a để M có giá trị nhỏ nhất
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
Cho biểu thức: \(M=\left(\frac{\left(a-1\right)^2}{31+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right):\frac{a^3+4a}{4a^2}\)
a) Rút gọn M
b) Tìm a để M > 0
c) Tìm giá trị của a để biểu thức M đạt giá trị lớn nhất. Tìm giá trị nhỏ nhất đó
cho biểu thức \(A=\frac{^{x^2}-2x+2011}{x^2}\) với x>0
tìm giá trị của x để biểu thức A đạt giá trị nhỏ nhất. tìm giá trị nhỏ nhất đó
bài này ta có thể giải theo 2 cách
ta có A = \(\frac{x^2-2x+2011}{x^2}\)
= \(\frac{x^2}{x^2}\)- \(\frac{2x}{x^2}\)+ \(\frac{2011}{x^2}\)
= 1 - \(\frac{2}{x}\)+ \(\frac{2011}{x^2}\)
đặt \(\frac{1}{x}\)= y ta có
A= 1- 2y + 2011y^2
cách 1 :
A = 2011y^2 - 2y + 1
= 2011 ( y^2 - \(\frac{2}{2011}y\)+ \(\frac{1}{2011}\))
= 2011( y^2 - 2.y.\(\frac{1}{2011}\)+ \(\frac{1}{2011^2}\)- \(\frac{1}{2011^2}\) + \(\frac{1}{2011}\))
= 2011 \(\left(\left(y-\frac{1}{2011}\right)^2\right)+\frac{2010}{2011^2}\)
= 2011\(\left(y-\frac{1}{2011}\right)^2\)+ \(\frac{2010}{2011}\)
vì ( y - \(\frac{1}{2011}\)) 2>=0
=> 2011\(\left(y-\frac{1}{2011}\right)^2\)+ \(\frac{2010}{2011}\)> = \(\frac{2010}{2011}\)
hay A >=\(\frac{2010}{2011}\)
cách 2
A = 2011y^2 - 2y + 1
= ( \(\sqrt{2011y^2}\)) - 2 . \(\sqrt{2011y}\). \(\frac{1}{\sqrt{2011}}\)+ \(\frac{1}{2011}\)+ \(\frac{2010}{2011}\)
= \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)+ \(\frac{2010}{2011}\)
vì \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)> =0
nên \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)+ \(\frac{2010}{2011}\)>= \(\frac{2010}{2011}\)
hay A >= \(\frac{2010}{2011}\)
Cho M = \(\dfrac{2011-6033:\left(x-2010\right)}{2009x2010x2013}\)
Tìm x để biểu thức M có giá trị nhỏ nhất. Giá trị nhỏ nhất đó bằng bao nhiêu ?
Lời giải:
Để $M$ nhỏ nhất thì $2011-6033:(x-2010)$ nhỏ nhất. Giá trị này chính bằng $0$
Khi đó:
$2011-6033:(x-2010)=0$
$x-2011=6033:2011=3$
$x=2014$
$M=\frac{2011-2011}{2009\times 2010\times 2013}=0$
cho m=2011-6033:(x-2010)/2009*2010*2013 tìm x để biểu thức m có giá trị nhỏ nhất giá trị nhỏ nhất đó bằng bao nhiêu
Cho biểu thức đại số M = 3 – (x – 1)2
a/ Tính giá trị biểu thức M khi x = –2; x = 0; x = 3.
b/ Tìm x để M = 6
c/ Tìm giá trị nhỏ nhất của biểu thức M
a: Khi x=-2 thì \(M=3-\left(-2-1\right)^2=3-9=-6\)
Khi x=0 thì \(M=3-\left(0-1\right)^2=2\)
Khi x=3 thì \(M=3-\left(3-1\right)^2=3-2^2=-1\)
b: Để M=6 thì \(3-\left(x-1\right)^2=6\)
\(\Leftrightarrow\left(x-1\right)^2=-3\)(loại)
c: \(M=-\left(x-1\right)^2+3\le3\forall x\)
Dấu '=' xảy ra khi x=1
a, Thay x=-2 vào M ta có:
\(M=3-\left(-2-1\right)^2=3-\left(-3\right)^2=3-9=-6\)
Thay x=0 vào M ta có:
\(M=3-\left(0-1\right)^2=3-\left(-1\right)^2=3-1=2\)
Thay x=3 vào M ta có:
\(M=3-\left(3-1\right)^2=3-2^2=3-4=-1\)
b, Để M=6 thì:
\(3-\left(x-1\right)^2=6\\ \Leftrightarrow\left(x-1\right)^2=-3\left(vô.lí\right)\)
c, Ta có: \(\left(x-1\right)^2\ge0\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
\(\Rightarrow M=3-\left(x-1\right)^2\le3\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
Vậy \(M_{max}=3\Leftrightarrow x=1\)
M = \(\frac{2a-a^2}{a+3}\left(\frac{a-2}{a+2}-\frac{a+2}{a-2}+\frac{4a^2}{4-a^2}\right)\)
a) Với giá trị nào của a thì M có nghĩa
b) Rút gọn biểu thức M. Tình giá trị của M với a=3
c) Tìm giá trị nguyên dương của a để M nhận giá trị nguyên
d) Tìm giá trị nhỏ nhất của M khi a > -3
Tìm giá trị của m để biểu thức A=m mũ 2-2m-5 đạt giá trị nhỏ nhất . Tính giá trị nhỏ nhất đó
\(A=m^2-2m-5\)
\(=m^2-2m+1-6\)
\(=\left(m-1\right)^2-6\ge-6\)
Dấu '' = '' xảy ra khi \(\left(m-1\right)^2=0\Leftrightarrow m=1\)
Vậy \(Min_A=-6\) khi \(m=1\)
\(A=m^2-2m-5\)
\(=\left(m^2-2m+1\right)-6\)
\(=\left(m-1\right)^2-6\ge-6\left(Vì\left(m-1\right)^2\ge0\forall m\right)\)
Min \(A=-6\Leftrightarrow m=1\)
Tìm giá trị của m để biểu thức A=m mũ 2-2m-5 đạt giá trị nhỏ nhất . Tính giá trị nhỏ nhất đó
`A=m^2-2m-5`
`A=m^2-2m+1-6`
`A=(m-1)^2-6`
Vì `(m-1)^2 >= 0 AA m`
`=>(m-1)^2-6 >= -6 AA m`
Hay `A >= -6 AA m`
Dấu "`=`" xảy ra `<=>(m-1)^2=0<=>m-1=0<=>m=1`
Vậy `GTN N` của `A` là `-6` khi `m=1`