cho x-y=2 ,tìm GTNN của các đa thức sau
a,P=xy+4
b,Q=x\(^2\)+y\(^2\)-xy
Cho x-y=2,tìm GTNN của các đa thức:
a)P=xy+4
b)Q=x^2+y^2-xy
Cho x-y=2 tìm gtnn của các đa thức
P=xy+4
Q=x^2+y^2-xy
Cho x-y=2,tìm GTNN của các đa thức
a) P=xy+4 b) Q=x2+y2-xy
Giải được một bài thôi,bạn thông cảm!
b)Ta có: \(Q_{min}=x^2+y^2-xy=x^2-xy+y^2=\left(x-y\right)^2=2^2=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\)
Vì x-y=2 nên x=y+2
a) P=xy+4=(y+2).y+4=y2+2y+4=y2+2y+1+3
P=(y+1)2+3 > 3 (dấu = <=> y=-1)
Do đó GTNN của P là 3 khi y=-1; x=1
b) Q=x2+y2-xy=x2-2xy+xy=(x-y)2+xy
Q=4+xy.Theo câu a thì GTNN của Q là 3 (khi x=1; y=-1)
Cho x - y = 2. Tìm GTNN của các đa thức
a) P = xy + 4
b) Q = x2 + y2 - xy
\(x-y=2\Rightarrow x=2+y\)
a) Thay x = 2+y vào P:
\(P=\left(2+y\right)y+4\)
\(=2y+y^2+4\)
\(=2\left(y^2+y+4\right)\)
\(=2\left(y^2+\dfrac{1}{2}y+\dfrac{1}{2}y+4\right)\)
\(=2\left[\left(y+\dfrac{1}{2}\right)^2+\dfrac{15}{4}\right]\)
\(=2\left(y+\dfrac{1}{2}\right)^2+\dfrac{15}{2}\)
Vì \(2\left(y+\dfrac{1}{2}\right)^2\ge0\Rightarrow2\left(y+\dfrac{1}{2}\right)^2+\dfrac{15}{2}\ge\dfrac{15}{2}\)
Dấu "=" xảy ra khi \(\left(y+\dfrac{1}{2}\right)^2=0\)
\(\Rightarrow y=\dfrac{-1}{2}\)
Khi đó: \(x=\dfrac{-1}{2}+2=\dfrac{3}{2}\)
Vậy ...
Ta có \(x-y=2\Rightarrow x=y+2\)
a,Thay x=y+2 vào P ta được:
\(P=y\left(y+2\right)+4=y^2+2y+4=\left(y+1\right)^2+3\ge3\)
Vậy GTNN của P = 3 khi y=-1 và x=1
b,Cũng thay như thế ta được
\(Q=\left(y+2\right)^2+y^2-y\left(y+2\right)=y^2+2y+4\)
Vậy GTNN của Q=3 khi y=-1 và x=1
Cho x = 2. Tìm giá trị nhỏ nhất của các đa thức sau:
a) P = xy + 4
b) Q = x2 + y2 - xy
12y+12y+4)" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax">12y+12y+4)
12)2+154]" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax">12)2+154]
12)2+152" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax">12)2+152
12)2≥0⇒2(y+12)2+152≥152" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax">12)2≥0⇒2(y+12)2+152≥152
12)2=0" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax">12)2=0
−12" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax">−12
−12+2=32" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax">−12+2=32
Vậy ...
Cho x-y=2. Tìm GTNN của: a) P=xy +4 b) Q=x^2 +y^2-xy
cho x - y =2. Tìm GTNN của:
a) P= xy+4
b) Q= x^2+y^2-xy
Từ x-y=2=>x=y+2
a)Thay x=y+2 vào P ta có:
\(P=xy+4=\left(y+2\right)y+4=y^2+2y+4=\left(y^2+2y+1\right)+3=\left(y^2+2.y.1+1^2\right)+3\)
\(=\left(y+1\right)^2+3\ge3\) với mọi y
Dấu "=" xảy ra <=> \(\left(y+1\right)^2=0\) <=> \(y=-1\) <=> \(x=1\)
Vậy...........
b)Thay x=y+2 vào Q ta có:
\(Q=x^2+y^2-xy=\left(y+2\right)^2+y^2-\left(y+2\right).y=y^2+4y+4+y^2-y^2-2y\)
\(=y^2-2y+4=\left(y^2-2y+1\right)+3=\left(y^2-2.y.1+1^2\right)+3=\left(y-1\right)^2+3\ge3\) với mọi y
Dấu "=" xảy ra <=> y=1 <=> x=2
Vậy.................
Tìm GTLN hoặc GTNN của các đa thức sau
B=-x^2 + 2xy - 4y^2 +2x +10y -9
D=2(x+y) +xy -x^2 - y^2
Cho x-y=2 .Tìm giá trị lớn nhất của đa thức sau :
a) P= xy + 4
b) Q=x2 + y2 - xy