Rút gọn:
\(\left(\sqrt{27}+\sqrt{96}-\sqrt{150}-\sqrt{12}\right):\left(1-\sqrt{2}\right)\)
Rút gọn:
a/ \(\left(\sqrt{7}+1\right).\left(2\sqrt{2}-1\right).\left(2\sqrt{14}-1\right).\left(55+12\sqrt{2}-7\sqrt{7}\right)\)
b/ \(\left(3\sqrt{2}+1\right).\left(2\sqrt{3}+1\right).\left(6\sqrt{6}+1\right).\left(215-34\sqrt{3}-33\sqrt{2}\right)\)
Rút gọn
\(\left(\sqrt{12}+2\sqrt{27}-\sqrt{3}\right):\sqrt{3}\)\(\left(4\sqrt{2}-\sqrt{8}+2\right).\sqrt{2-\sqrt{8}}\)\(\sqrt{3}\left(2\sqrt{27}-\sqrt{75}+\frac{3}{2}\sqrt{12}\right)\)
\(\left(\sqrt{12}+2\sqrt{27}-\sqrt{3}\right):\sqrt{3}\)
\(=\sqrt{12}:\sqrt{3}+2\sqrt{27}:\sqrt{3}-\sqrt{3}:\sqrt{3}\)
\(=\sqrt{4}+2\sqrt{9}-1\)
\(=2+6-1\)
\(=7\)
2) \(\left(4\sqrt{2}-\sqrt{8}+2\right).\sqrt{2-\sqrt{8}}\)
\(=\left(4\sqrt{2}-2\sqrt{2}+2\right).\sqrt{2-2\sqrt{2}}\)
\(=\left(2\sqrt{2}+2\right)^2.\left(\sqrt{2-2\sqrt{2}}\right)^2\)
\(=\left(8+4\right)\left(2-2\sqrt{2}\right)\)
\(=12.\left(2-2\sqrt{2}\right)\)
\(=24-24\sqrt{2}\)
\(=24\left(1-\sqrt{2}\right)\)
3) \(\sqrt{3}\left(2\sqrt{27}-\sqrt{75}+\frac{3}{2}\sqrt{12}\right)\)
\(=\sqrt{3}\left(2\sqrt{3^2.3}-\sqrt{5^2.3}+\frac{3}{2}\sqrt{2^2.3}\right)\)
\(=\sqrt{3}\left(6\sqrt{3}-5\sqrt{3}+3\sqrt{3}\right)\)
\(=\sqrt{3}.4\sqrt{3}\)
\(=12\)
1. Rút gọn biểu thức:
\(D=\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\frac{1}{3}}\)
2. Thực hiện phép tính rồi rút gọn:
\(A=\left(\sqrt{32}-\sqrt{50}+\sqrt{27}\right).\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)\)
\(B=1-\left(\sqrt{45}-\sqrt{20}-\sqrt{3}\right).\left(\sqrt{20}-\sqrt{45}-\sqrt{3}\right)\)
1.\(D=\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\frac{1}{3}}\)\(=2\sqrt{3}-10\sqrt{3}-\sqrt{3}+\frac{10\sqrt{3}}{3}\)\(=\frac{-17\sqrt{3}}{3}\)
2.\(A=27-\left(\sqrt{32}-\sqrt{50}\right)^2=25\)
\(B=1-\left(\left(-\sqrt{3}\right)^2-\left(\sqrt{20}-\sqrt{45}\right)^2\right)\)\(=1-\left(-2\right)=3\)
rút gọn \(a=\left(\frac{2}{\sqrt{3}-1}-\frac{52}{3\sqrt{3}-1}+\frac{12}{3-\sqrt{3}}\right)\left(5+\sqrt{27}\right)\)
rút gọn
a/\(\sqrt{12}+3\sqrt{27}-\sqrt{300}\)
b/ \(\sqrt{\left(1-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2+3}\right)^2}\)
\(a,=2\sqrt{3}+9\sqrt{3}-10\sqrt{3}=\sqrt{3}\\ b,=\left|1-\sqrt{2}\right|+\sqrt{5}=\sqrt{2}-1+\sqrt{5}\)
a)\(\sqrt{12}+3\sqrt{27}-\sqrt{300}=2\sqrt{3}+9\sqrt{3}-10\sqrt{3}=\sqrt{3}\)
b) \(\sqrt{\left(1-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}+3\right)^2}=\left|1-\sqrt{2}\right|-\left|\sqrt{2}+3\right|=\sqrt{2}-1-\sqrt{2}-3=-4\)
Rút gọn biểu thức: P=\(\frac{1}{3}\left(\sqrt[3]{2}+1\right)\left(\sqrt{12\sqrt[3]{2}-15}+2\sqrt{3\sqrt[3]{4}-3}\right)\)
rút gọn
\(\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)
Rút gọn \(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+1\right)\)
\(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+1\right)=-5-10\sqrt{6}\)
Mình không chắc lắm
câu 2 rút gọn A= \(\sqrt{12}+2\sqrt{27}+3\sqrt{45}-9\sqrt{48}\)
B=\(\left(\sqrt{48}-2\sqrt{75}+\sqrt{108}-\sqrt{147}\right):\sqrt{3}\)
\(A=\sqrt{12}+2\sqrt{27}+3\sqrt{45}-9\sqrt{48}\)
\(=2\sqrt{3}+6\sqrt{3}+9\sqrt{5}-36\sqrt{3}\)
\(=9\sqrt{5}-28\sqrt{3}\)
\(B=\left(\sqrt{48}-2\sqrt{75}+\sqrt{108}-\sqrt{147}\right):\sqrt{3}\)
\(=4-2\cdot5+6-7\)
\(=4-10+6-7\)
=-7
A=\(\sqrt{12}\)+2\(\sqrt{27}\)+3\(\sqrt{45}\) -9\(\sqrt{48}\)
=\(\sqrt{4.3}\) +2\(\sqrt{9.3}\)+3\(\sqrt{9.5}\) -9\(\sqrt{16.3}\)
=2\(\sqrt{3}\) +6\(\sqrt{3}\)+9\(\sqrt{5}\) -36\(\sqrt{3}\)
=\(\sqrt{3}\)(2+6-36) + 9\(\sqrt{5}\)
=9\(\sqrt{5}\)- 28\(\sqrt{3}\)