Tìm x biết:
5x^2+2y^2-6xy+16x-8y+16=0
Tìm x biết:
5x^2+2y^2-6xy+16x-8y+16=0
\(5x^2+2y^2-6xy+16x-8y+16=0\)
\(\Rightarrow10x^2+4y^2-12xy+32x-16y+32=0\)
\(\Rightarrow\left(9x^2-12xy+4y^2\right)+\left(24x-16y\right)+16+\left(x^2+8x+16\right)=0\)
\(\Rightarrow\left(3x-2y\right)^2+2.\left(3x-2y\right).4+4^2+\left(x+4\right)^2=0\)
\(\Rightarrow\left(3x-2y+4\right)^2+\left(x+4\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}3x-2y+4=0\\x+4=0\end{cases}\Rightarrow}\hept{\begin{cases}-12-2y+4=0\\x=-4\end{cases}\Rightarrow\hept{\begin{cases}y=-4\\x=-4\end{cases}}}\)
Vậy \(x=y=-4\)
Bài 1: Phân tích đa thức thành nhân tử: a) 4y3 + 16y2 + 16y b) 8x2-48x+6xy-36y c) 8x2-48x-6xy+36y d) a2 –2ab+b2 –4 e) 4–x2 –4xy–4y2 f) 8a2 –16a+8ax–16x g) 16–4x2 +8xy–4y2 h) –4x2 –16xy–16y2 Bài 2: Tìm x, biết: a) x3 – 6x2 + 9x = 0 b) 5x(x–6)+3x–18=0 c) 5x(x – 6) – 18 + 3x = 0 d) 5x(x – 6) – 3x + 18 = 0 e) (2x – 3)2 = (5 – x)2 f) (2x + 1)2 = (3x – 2)2 g) 16(2x–3)=-25x2 (3–2x)
b: \(8x^2-48x+6xy-36y\)
\(=8x\left(x-6\right)+6y\left(x-6\right)\)
\(=2\left(x-6\right)\left(4x+3y\right)\)
d: \(a^2-2ab+b^2-4\)
\(=\left(a-b\right)^2-4\)
\(=\left(a-b-2\right)\left(a-b+2\right)\)
giải hệ :
1, x^2+3y=9 v y^4+4(2x+3)y^2-48y-48x+155=0
2, y^2=(5x+4)(4-x) v y^2-5x^2-4xy+16x-8y+16=0
3, x(x+y)+y^2=4x-1 v x(x+y)^2-2y^2=7x+2
- "v" là ngoặc "{" giúp t câu nào cũng đc
a)\(y^4+4(2x-3)y^2-48x-48y+155=0\)
\(\Leftrightarrow y^4+8y^2x+16(9-3y)-12(y^2+4x)+11=0\)
\(\Leftrightarrow(y^2+4x)^2-12(y^2+4x)+11=0\)
<=>....
b)\(y^2-5x^2-4xy+16x-8y+16=0\)
\(\Leftrightarrow-\left(5x-y+4\right)\left(x+y-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=4-x\\y=5x+4\end{cases}}\)
tới đây nhìn vào pt thứ 1 là thấy 1 sự dễ ko hề nhẹ
c)\(pt\left(1\right)\Leftrightarrow2x\left(x+y\right)+2y^2=8x-2\)
cộng theo vế pt(1) vừa tương đương vs pt 2
\(\Leftrightarrow x\left(\left(x+y\right)^2+2\left(x+y\right)-15\right)=0\)
....
Hướng dẫn thui nhé sắp bão to nên phải off r` ko lm dc tiếp thì ib :333
câu 1 có vấn đề , (2x+3) , ko phải (2x-3)
giải hpt:
\(\hept{\begin{cases}y^2=\left(5x+4\right)\left(4-x\right)\\y^2-5x^2-4xy+16x-8y+16=0\end{cases}}\)
(=)\(\hept{\begin{cases}y^2=\left(5x+4\right)\left(4-x\right)\left(1\right)\\y^2-4xy-8y+\left(16x-5x^2+16\right)=0\left(2\right)\end{cases}}\)
Thế (1) vào (2) ta được: (2) (=) 2y2 -4xy -8y =0 (=) y2 - 2xy - 4y =0 (=) y(y-2x-4)=0 (=) y=0 hoặc y=2x +4
Với y=0 => x=-4/5 hoặc x=4
Với y=2x+2. Thế vào (1) ta được x=0 và y=4
Tìm x và y: 5x^2+10y^2-6xy-4x-2y+3=0
giải hệ phương trình:
\(\left\{{}\begin{matrix}y^2=\left(5x+4\right)\left(4-x\right)\\y^2-5x^2-4xy+16x-8y+16=0\end{matrix}\right.\)
\(y^2-2\left(2x+4\right)y-5x^2+16x+16=0\)
\(\Delta'=\left(2x+4\right)^2+5x^2-16x-16=9x^2\)
\(\Rightarrow\left\{{}\begin{matrix}y=2x+4+3x=5x+4\\y=2x+4-3x=4-x\end{matrix}\right.\)
- Với \(y=5x+4\) thay vào pt đầu:
\(\left(5x+4\right)^2-\left(5x+4\right)\left(4-x\right)=0\Rightarrow...\)
- Với \(y=4-x\) thay vào pt đầu:
\(\left(4-x\right)^2-\left(4-x\right)\left(5x+4\right)=0\Rightarrow...\)
Phân tích đa thức thành nhân tử
a. 3x^2 - 6x + 9x^2 + x^3
b. 10x( x-y ) - 6y( y-x )
c. 3x^2 + 5y - 3xy - 5x
d. 3y^2 - 3z^2 + 6xy
e. 27 + 27x + 9x^2
f. 8x^3 - 12x^2y + 6xy^2 - y^3
g. X^3 + 8y^3
h. 16x^3 + 54y^3
i. x^2 - 25 - 2xy + y^2
k. x^5 - 3x^4 + 3x^3 - x^2
\(10x\left(x-y\right)-6y\left(y-x\right)\)
\(=10x\left(x-y\right)+6x\left(x-y\right)\)
\(=\left(10x+6x\right)\left(x-y\right)\)
\(c,3x^2+5y-3xy-5x\)
\(=\left(3x^2-3xy\right)+\left(5y-5x\right)\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(3x-5\right)\left(x-y\right)\)
\(e,27+27x+9x^2=3\left(9+9x+x^2\right)\)
\(f,8x^3-12x^2y+6xy^2-y^3\)
\(=\left(2x-y\right)^3\)
\(g,x^3+8y^3=x^3+\left(2y\right)^3\)
\(=\left(x+2y\right)\left(x^2-2xy+4x^2\right)\)
\(i,x^2-25-2xy+y^2\)
\(\left(x^2-2xy+y^2\right)-25=\left(x-y\right)^2-5^2\)
\(=\left(x-y-5\right)\left(x-y+5\right)\)
Tìm x,y biết
a,x2+2y2+2xy-2y+1=0
b, 5x2+3y2+z2 -4x+6xy+4z+6=0
a) \(x^2+2y^2+2xy-2y+1=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(y-1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x+y=0\\y=1\end{cases}\Rightarrow}x=-1}\)
Vậy x=-1 ; y=1
Bài 1: CMR không tồn tại các số thực x,y,z thỏa mãn
a, \(5x^2+10y^2-6xy-4x-2y+3=0\)
b, \(x^2+4y^2-z^2-2x-6z+8y+15=0\)
a) 5x2 + 10y2 - 6xy - 4x - 2y + 3
= ( x2 - 6xy + 9y2 ) + ( 4x2 - 4x + 1 ) + ( y2 - 2y + 1 ) + 1
= ( x - 3y )2 + ( 2x - 1 )2 + ( y - 1 )2 + 1
Ta có : \(\hept{\begin{cases}\left(x-3y\right)^2\\\left(2x-1\right)^2\\\left(y-1\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1>0\forall x,y\)
=> đpcm
b) x2 + 4y2 + z2 - 2x - 6z + 8y + 15 = 0 < Sửa -z2 -> +z2 )
= ( x2 - 2x + 1 ) + ( 4y2 + 8y + 4 ) + ( z2 - 6z + 9 ) + 1
= ( x - 1 )2 + 4( y2 + 2y + 1 ) + ( z - 3 )2 + 1
= ( x - 1 )2 + 4( y + 1 )2 + ( z - 3 )2 + 1
Ta có : \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\4\left(y+1\right)^2\ge0\forall y\\\left(z-3\right)^2\ge0\forall z\end{cases}}\Rightarrow\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1\ge1>0\forall x,y,z\)
=> đpcm