Những câu hỏi liên quan
TK
Xem chi tiết
NT
1 tháng 2 2022 lúc 14:20

 

Bình luận (0)
AT
Xem chi tiết
NT
12 tháng 5 2023 lúc 7:33

1:

a: =>3x=6

=>x=2

b: =>4x=16

=>x=4

c: =>4x-6=9-x

=>5x=15

=>x=3

d: =>7x-12=x+6

=>6x=18

=>x=3

2:

a: =>2x<=-8

=>x<=-4

b: =>x+5<0

=>x<-5

c: =>2x>8

=>x>4

Bình luận (0)
TK
Xem chi tiết
NT
1 tháng 2 2022 lúc 14:19

Đặt \(a=x^2+3x-4;b=3x^2+7x+4\)

Theo đề, ta có: \(a^3+b^3=\left(a+b\right)^3\)

\(\Leftrightarrow3ab\left(a+b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+4\right)\left(x-1\right)=0\\\left(3x+4\right)\left(x+1\right)=0\\2x\left(2x+5\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{-4;1;-\dfrac{4}{3};-1;0;-\dfrac{5}{2}\right\}\)

Bình luận (0)
TK
Xem chi tiết
LF
19 tháng 8 2016 lúc 11:33

x=-4, x=-5/2, x=-4/3, x=-1, x=0, x=1

bậc to quá nghĩ cách giải đã

 

Bình luận (1)
LF
8 tháng 3 2018 lúc 22:35

Phan Đỗ Hoàng Linh Đăt \(a=x^2+3x-4,b=3x^2+7x+4\Rightarrow a+b=4x^2+10x\), ta có

\(a^3+b^3=\left(a+b\right)^3\)

\(\Leftrightarrow a^3+b^3=a^3+b^3+3ab\left(a+b\right)\)

\(\Leftrightarrow3ab\left(a+b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=0\\b=0\\a=-b\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x^2+3x-4=0\\3x^2+7x+4=0\\x^2+3x-4=-\left(3x^2+7x+4\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x+4\right)=0\\\left(x+1\right)\left(3x+4\right)=0\\2x\left(2x+5\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm1\\x=-4\\x=-\dfrac{4}{3}\text{hoăc}x=-\dfrac{5}{2}\end{matrix}\right.\)

Bình luận (1)
NG
Xem chi tiết
NH
Xem chi tiết
H24
3 tháng 4 2020 lúc 8:49

a) ( 3.x + 1 ) . ( 7.x + 3 ) = (5.x-7 ) . ( 3.x + 1 )  

<=> ( 3.x + 1 ) . ( 7.x + 3 ) - ( 5.x - 7) . ( 3.x + 1 ) = 0

<=> ( 3.x + 1 ) . ( 7.x + 3 - 5.x + 7 ) = 0

<=> ( 3.x + 1 ) . ( 2.x + 10 ) = 0

<=> \(\orbr{\begin{cases}3.x+1=0\\2.x+10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=-5\end{cases}}}\)

Vậy x = { \(\frac{-1}{3};-5\)

b) x2 + 10.x + 25 - 4.x . ( x + 5 ) = 0 

<=> ( x + 5 )2 -4.x . (x + 5 ) = 0

<=> ( x+ 5 ) . ( x + 5 - 4.x ) = 0

<=> ( x + 5 ) . ( 5 - 3.x )  = 0

<=> \(\orbr{\begin{cases}x+5=0\\5-3.x\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{5}{3}\end{cases}}}\)

Vậy x = \(\left\{\frac{5}{3};-5\right\}\)

c) (4.x - 5 )- 2. ( 16.x2 -25 ) = 0 

<=> ( 4.x-5)2 -2 .( 4.x-5) .( 4.x + 5 ) = 0

<=> (  4.x -5 )2 - ( 8.x+ 10 ) . ( 4.x -5 ) = 0

<=> ( 4.x -5 ) . ( 4.x-5 - 8.x - 10 ) = 0

<=> ( 4.x - 5 ) . ( -4.x - 15 ) = 0

<=> \(\orbr{\begin{cases}4.x-5=0\\-4.x-15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=\frac{-15}{4}\end{cases}}}\)

Vậy x = \(\left\{\frac{5}{4};\frac{-15}{4}\right\}\)

d) ( 4.x + 3 )2 = 4. ( x- 2.x + 1 ) 

<=> 16.x+ 24.x + 9 - 4.x + 8.x - 4 = 0

<=> 12.x2 + 32.x + 5 =0 

<=> 12. ( x +\(\frac{1}{8}\) ) . ( x + \(\frac{5}{2}\)) = 0 

<=> \(\orbr{\begin{cases}x+\frac{1}{6}=0\\x+\frac{5}{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{6}\\x=\frac{-5}{2}\end{cases}}}\)

Vậy x = \(\left\{\frac{-1}{6};\frac{-5}{2}\right\}\)

e) x2 -11.x + 28 = 0

<=> x2 -4.x  - 7.x + 28 = 0

<=> ( x - 7 ) . ( x - 4 ) = 0

<=> \(\orbr{\begin{cases}x-7=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=4\end{cases}}}\)

Vậy x = { 4 ; 7 } 

f ) 3.x.3 - 3.x2 - 6.x = 0

<=> 3.x. ( x2 -x - 2 ) = 0 

<=> 3.x. ( x - 2 ) . ( x + 1 ) = 0

<=> \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)

        \([x=0\)                \([x=0\)

( Lưu ý :Lưu ý này không cần ghi vào vở :  Chị nối 2 ý đó làm 1 nha cj ! ) 

Vậy x = { 2 ; -1 ; 0 } 

Bình luận (0)
 Khách vãng lai đã xóa
TA
Xem chi tiết
NL
10 tháng 2 2020 lúc 23:39

\(\Leftrightarrow\left(x^2+3x-4\right)^3+\left(3x^2+7x+4\right)^3+\left(-4x^2-10x\right)^3=0\)

Với \(a+b+c=0\Rightarrow a+b=-c\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=-3ab\left(-c\right)=3abc\)

Do \(\left(x^2+3x-4\right)+\left(3x^2+7x+4\right)+\left(-4x^2-10x\right)=0\)

Áp dụng chứng minh trên ta có:

\(3\left(x^2+3x-4\right)\left(3x^2+7x+4\right)\left(-4x^2-10x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+3x-4=0\\3x^2+7x+4=0\\-4x^2-10x=0\end{matrix}\right.\) \(\Rightarrow x=...\)

Bình luận (0)
 Khách vãng lai đã xóa
CN
Xem chi tiết
TN
11 tháng 2 2018 lúc 13:24

a, (3x+1)(7x+3)=(5x-7)(3x+1)

<=> (3x+1)(7x+3)-(5x-7)(3x+1)=0

<=> (3x+1)(7x+3-5x+7)=0

<=> (3x+1)(2x+10)=0

<=> 2(3x+1)(x+5)=0

=> 3x+1=0 hoặc x+5=0

=> x= -1/3 hoặc x=-5

Vậy...

Bình luận (0)
LG
27 tháng 5 2018 lúc 11:48

a) (3x - 2)(4x + 5) = 0

⇔ 3x - 2 = 0 hoặc 4x + 5 = 0

1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3

2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4

Vậy phương trình có tập nghiệm S = {2/3;−5/4}

b) (2,3x - 6,9)(0,1x + 2) = 0

⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0

1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3

2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.

Vậy phương trình có tập hợp nghiệm S = {3;-20}

c) (4x + 2)(x2 +  1) = 0 ⇔ 4x + 2 = 0 hoặc x2 +  1 = 0

1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2

2) x2 +  1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)

Vậy phương trình có tập hợp nghiệm S = {−1/2}

d) (2x + 7)(x - 5)(5x + 1) = 0

⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0

1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2

2) x - 5 = 0 ⇔ x = 5

3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5

Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}


 

Bình luận (0)
H24
16 tháng 2 2020 lúc 7:15

Phần a,b,c,d,e các bạn kia giải rồi nha anh !

f,Ta có \(3.x^3-3.x^2-6.x=0\)

           \(\Leftrightarrow3.x.\left(x+1\right).\left(x-2\right)\)

             \(\Leftrightarrow x.\left(x+1\right).\left(x-2\right)=0:3\)(anh không cần phải viết dòng này cũng được ạ )

            \(\Leftrightarrow x.\left(x+1\right).\left(x-2\right)=0\)

             \(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}x+1=0\)( 3 trường hợp nhé anh )

              \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}x=-1\)

Vậy \(x_1=0;x_2=-1;x_3=2\)

STUDY WELL !

Bình luận (0)
 Khách vãng lai đã xóa
DA
Xem chi tiết