Cho A = 3 + 3^3 + 3^5 + 3^7 + ... + 3^101
Chứng minh rằng tổng đó chia hết cho 13
Bài 1 :
Cho A = 13 + \(13^2+13^3+13^4+13^5+13^6.\) Chứng minh rằng A \(\)chia hết cho 2 .
Bài 2 :
Cho C = \(2+2^2+2^3+.....+2^{2011}+2^{2012}\). Chứng minh rằng C chia hết cho 3 .
Bài 3 :
Chứng minh rằng : A = \(2^1+2^2+2^3+.....+2^{59}+2^{60}\)chia hết cho 7
Bài 4 :
Cho A = \(7+7^3+7^5+....+7^{1999}\) . Chứng minh rằng A chia hết cho 35
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
Tính tổng
A=1+3^2+3^4+3^6+3^8+....+3^100
Áp dụng:Tính tổng
a) A= 1+2^2+2^4+2^6+...+2^200
b) B=5+5^3+5^5+...+5^101
c) C=13+13^3+13^5+13^7+...+13^99
Chứng minh rằng
A=2^2+2^4+...+2^20 chia hết cho 5
B=1+3+3^2+3^3+...+3^11 chia hết cho 13 , chia hết cho 40
các bạn giúp mk nha, hạn cuối là thứ 2 tuần 12 nhé
1. a, Cho B = 3 + 3^3 + 3^5 +...+ 3^1991. Chứng minh rằng: B chia hết cho 3 ; B chia hết cho 41
b, Chứng minh rằng: (99^5 - 98^4 - 97^3 - 96^3) chia hết cho 2, cho 5.
c, A = 999993^1999 - 555557^1997. Chứng minh: A chia hết cho 5.
d, A = 8n + 111..1 ( n chữ số 1 ). Chứng minh: A chia hết cho 9.
e, Cho ( abc + deg ) chia hết cho 37. Chứng minh: abcd chia hết chio 37.
2. Tìm 2 số biết rằng tổng của chúng gấp 7 lần hiệu của chúng, còn tích của chúng gấp 192 lần hiệu của chúng.
3. Tìm số nhỏ hơn 100, biết rằng khi chia số đó cho 5 thì được dư là 3, chia cho 11 dư 5.
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)
A=1+2+2^2+2^3.....2^101
chứng minh A chia hết cho 13
giúp mik với
A=1+2+2^2+2^3.....2^101
chứng minh A chia hết cho 13
giúp mik với
Chứng minh rằng A=3+3^3+3^5+3^7+3^9+...+3^2009 chia hết cho 13
A = 3 + 33 + 35 + 37 + 39 + ... + 32009
A = ( 3 + 33 + 35 ) + ( 37 + 39 + 311 ) + ... + ( 32005 + 32007 + 32009 )
A = 273 + 36 . ( 3 + 33 +35 ) + ... + 32004 . ( 3 + 33 + 35 )
A = 273 + 36 . 273 + ... + 32004 . 273
A = 273 . ( 1 + 36 + ... + 32004 )
A = 13 . 21 . ( 1 + 36 + ... + 32004 ) chia hết cho 13
Chứng minh rằng A = 3+3^3+3^5+3^7+3^9+...+3^2009. chia hết cho 13
\(A=3+3^3+3^5+...+3^{2005}+3^{2007}+3^{2009}\)
\(A=3\cdot\left(1+3^2+3^4\right)+...+3^{2005}\cdot\left(1+3^2+3^4\right)\)
\(A=3\cdot91+...+3^{2005}\cdot91\)
\(A=91\cdot\left(3+...+3^{2005}\right)\)
\(A=13\cdot7\cdot\left(3+...+3^{2005}\right)⋮13\left(đpcm\right)\)
A=3+3^3+3^5+....+3^2009 (1)
9A=3^3+3^5+3^7+...+3^2011 (2)
trừ vế với vế của (2) cho (1)
9A-A=(3^3+3^5+...+3^2011)-(3+3^3+...+3^2009)
8A=3^2011-3
A=\(\frac{3^{2011}-3}{8}\)
a)cho a, b là các số nguyên, chứng minh rằng nếu a chia cho 13 dư 2 và b chia cho 13 dư 3 thì a^2 + b^2 chia hết cho 13
b) Cho a,b là các số nguyên . Chứng minh rằng nếu a chia cho 19 dư 3 , b chia cho 19 dư 2 thì a^2 + b^2 + ab chia hết cho 19
c) chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 3
huk mìk như pn thuj có 6 đề hsg đây nè
Bài toán 1:
Cho A = 3 + 3^3 + 3^5 + ... + 3^1991
Chứng minh A chia hết cho 13, chia hết cho 14
Bài toán 2:
Chứng minh rằng : (n+7) . (n+8) . (n+9) chia hết cho 2 và chia hết cho 3 (n thuộc N)